
Conversations in Developer Communities: a Preliminary
Analysis of the Yahoo! Pipes Community
M. Cameron Jones

Yahoo! Research

4401 Great America Parkway
Santa Clara, CA 95054

mcj@acm.org

Elizabeth F. Churchill

Yahoo! Research

4401 Great America Parkway
Santa Clara, CA 95054

churchill@acm.org

ABSTRACT

In this paper we describe several issues end-users may face when

developing web mashup applications in visual language tools like

Yahoo! Pipes. We explore how these problems manifest

themselves in the conversations users have in the associated

discussion forums, and examine the community practices and

processes at work in collaborative debugging, and problem

solving. We have noticed two valences of engagement in the

community: core and peripheral. Core engagement involves active

question asking and answering and contribution of example

content. Peripheral engagement refers to those who read but don‟t

post, and those who post legitimate questions and content, but

whose posts receive no response. We consider what the

characteristics are of each of these groups, why there is such a

strong divide, and how the periphery functions in the community

process.

Categories and Subject Descriptors

D.3.0. [Programming Languages]: General

General Terms

Design, Documentation, Languages.

Keywords

Web mashups, developer communities, end-user programming,

conversations, code, participation, question-answer forums.

1. INTRODUCTION
Web mashups are an ideal context in which to observe and

analyze end-user programming activity, including the usage of

visual languages and tools. By studying the interactions among

members of ad-hoc developer communities we can begin to

understand not only how independent developers support each

other in learning about, and debugging programs, but also what

the role of community participation is in such contexts. The

mashup ecosystem is populated with many tools and languages

designed to support mashup development; groups of developers

congregate online around these tools and services in order to give

and receive help, and to thus show and develop expertise. The

level of organization and formality in these communities varies,

and activities are dispersed across a number of media including:

discussion forums, video tutorials on video sharing sites, text

tutorials on personal blogs, chat conversations in IRC and/or

instant messaging channels, code snippets and annotations in

blogs and code snippet sharing sites, and so on. These electronic

communications constitute conversations around code, and serve

as a primary resource for novice, and expert programmers. They

are essential to navigating the loosely connected space of

heterogeneous services, tools, and resources that comprise the

mashup ecosystem.

By studying the conversations surrounding the development of

mashup applications, we can infer barriers which impede the

development of mashup applications, and which also reflect on

the general challenges imposed on application development by the

nature of the mashup ecosystem. We can also see how the

community works to rectify these problems, and provides

technical support and debugging assistance for working around

bugs in applications and mashup development platforms. In this

paper we present the findings of a preliminary, qualitative analysis

of conversations and discussions surrounding the development of

mashup applications in the Yahoo! Pipes environment.

1.1 Social aspects of code development
Social interaction in software development has typically been

studied in the context of collaborative software development in

teams and organizations (e.g., [7], [8], [15], [13]), presumably

because this was where collaborative programming could be

observed. Increasingly, however, software development is

happening outside of and between organizations. These alternative

programming contexts include things like open source software

projects, and hobbyist development. The social structures of open

source communities have garnered research interest (e.g., [4]), and

more recently, attention is turning towards the social and

collaborative practices of hobbyist programmers on the web (e.g.,

[14], [20]).

Crowston & Howison [4] found that open-source development

communities range in the degree to which there is centralized

control over the code base. Strongly centralized networks were

indicated by star-shaped networks, with a central hub and many

developers connected only to that hub, and few connections to

others. Decentralized networks lack a single, central authority,

having several hubs, and resemble a thicket of inter-connections.

Furthermore, Crowston & Howison found that as project sizes

increase, projects tend to be less centrally controlled, most likely

because the complexity of the project exceeds that which can be

managed by an individual.

In studies of collaborative software development, there is a

common programming task or project that defines the group being

studied; all participants are working towards a common goal.

However, the web is playing a more significant role in individual

programming, connecting independent developers to each other

and to other entities like large software projects. For example,

Copyright is held by the author/owner(s).

C&T’09, June 25–27, 2009, University Park, Pennsylvania, USA.

ACM 978-1-60558-601-4/09/06.

195

developer networks like the Yahoo! Developer Network (YDN)

bring together programmers utilizing Yahoo! products, services,

and data sources in online discussion forums and mailing lists.

Looser networks are scattered across the web in the form of

coding blogs (e.g., http://alistapart.com/ for CSS developers, or

http://quirksmode.com/ for JavaScript), programming discussion

forums (e.g., http://php-forum.com/), and code sharing sites (e.g.,

http://snipplr.com/).

These groups and communities are similar to those of traditional

collaborative software development, in that there is a common

programming context (e.g., tools, languages, environments, goals,

etc), but are different in that there is not a common project, a

common goal or a common organizational context of production;

each developer is independently seeking individual objectives but

interacting with others to achieve those goals. This reflects a shift

from an understanding of software development as primarily an

individual or group effort towards a more open, social approach to

software development and debugging.

The web is serving as the primary medium for social engagement

around software. Several studies have examined the role of the

web, and web resources in the software development. Brandt, et

al. [1] describe “opportunistic programming”, where the ready

availability of source code, tutorials, and examples on the web

make for easy programming by copy-paste, allowing developers

to compose applications as they opportunistically encounter code

and coding resources. Stylos and Myers [17] have built search

tools for facilitating the finding and reuse of coding information

on the web. Programming, outside explicitly collaborative

contexts, may at first appear to be a solitary act, is actually rooted

in a complex social web of building off of, and with others‟ code

found online.

The community of developers surrounding the Yahoo! Pipes

environment foregrounds the role of conversational interaction in

collaborative problem solving. In order to understand the nature of

the programming challenges faced by Yahoo! Pipes developers,

we briefly discuss the challenges of mashup programming and the

Yahoo! Pipes platform. Following this, we introduce the Yahoo!

Pipes developer community and discuss several conversations

taken from the Pipes developer forums. These examples highlight,

not only the particular barriers which developers face, but reflect

on the role of the community process in support and problem

solving.

1.2 Why community help matters for

mashups
Mashup programming “in the wild” as represented by many of the

applications listed on ProgrammableWeb.com is a complex and

informal programming ecosystem. Unlike the orderly,

monumental, cathedral-like arrangement of classes and resources

in languages like SmallTalk or Java, mashup programming is a

chaotic bazaar of offerings. The mix of heterogeneous services,

each with their own application programming interfaces (APIs),

data types and structures, programming models and patterns,

quickly becomes unmanageable.

Within a conventional designed programming environment, care

has been taken through the refactoring of elements into code

libraries to achieve compatibility between data structures and

function calls, as well as a degree of semantic and syntactic

consistency in how these are provided. In the mashup eco-system,

however, there is no authoritative control, or oversight; no

architect designing things on a global scale.

Stylos & Myers [18] have outlined the many design decisions that

go into the formalization of an API, and although they were not

studying web service interfaces in particular, their findings

highlight the complexity of the process. Often, the design of APIs

externalizes the models, process, and inner-workings of the

system, which does not always correspond to the ways in which

external developers (i.e., users of the API) want to use the API or

think about the problem. This makes learning and using one API

challenging enough – but in the mashup context when interfacing

with multiple APIs, created and maintained by different

organizations or developers, there is the additional challenge of

mapping between the possibly conflicting models and

abstractions.

Jones, Churchill, and Twidale [9], have taken the cognitive

dimensions framework (c.f., [6]), and applied it to understanding

the complexities of mashup development. They discuss the

difficulties which arise from: conflicting levels of abstraction in

APIs; low consistency in the ecosystem in general; the many

hidden dependencies inherent in mashup development; the

inability to effectively drill down beyond the black-box of the

API; and the often necessary mental acrobatics developers must

perform in order to achieve an end result. They also describe

additional concerns salient to the mashup context which

complicate development: the relatively low stability of service

APIs and the mashup ecosystem over time, as services and

technologies change and evolve; the unreliability of services, and

data in mashups, which often are provided with no service-level

agreements or guarantees of accuracy, availability, or consistency;

and the relative difficulty with which knowledge is sharable and

transferrable in mashup development.

In their survey of web-active end-users, Zang & Rosson [20]

asked participants to describe how a mashup is made, the majority

of the respondents had trouble breaking down the mashup into

even a basic three-step process of: collect, transform, display. This

resonates with the findings that similar hurdles are encountered

when teaching mashups to novices [5]; learners don‟t know how

to translate the idea they have into a computational model or

procedure for developing a mashup.

Given the complexities in mashup development, and the

difficulties end-user programmers have in understanding the

development process, users are prone to make errors and

introduce bugs into their applications. Visual programming tools

may help mitigate many types of errors, but they may also

introduce of other types of errors, obfuscate the origin of errors, or

interfere with effective communication and explanation. In the

following sections we will introduce the Yahoo! Pipes mashup

development environment, and present several conversations we

have observed surrounding the development of mashups in

Yahoo! Pipes. These conversations reflect more general

challenges for visual language approaches to mashup

development.

2. The Context of Study: Yahoo! Pipes
Yahoo! Pipes is a web-based visual programming language for

constructing data mashups. Yahoo! Pipes was originally

developed as a tool to make extracting, aggregating, and

republishing data from across the web easier. Since its launch in

February 2007, over 90,000 developers have created individual

pipes on the Yahoo! Pipes platform, and pipes are executed over

5,000,000 times each day. Figure 1 shows the Yahoo! Pipes

editing environment. The environment consists of four main

196

regions: a navigational bar across the top, the toolbox on the left,

the work canvas in the center, and a debug-output panel at the

bottom. The toolbox contains modules, the building blocks of the

Yahoo! Pipes visual language.

Yahoo! Pipes‟ namesake is the Unix command-line pipe operator,

which allows a user to string together a series of commands,

where the output of one is passed as input to the next. In the

graphical language of Yahoo! Pipes, modules (operators) are laid

out on a design canvas. Modules may have zero or more input

ports, and all have at least one output port; additionally, modules

may have parameters which can be set by the programmer, or

themselves wired into the output of other modules so that the

value of the parameter is dependent upon a runtime value

specified elsewhere. The input and output ports are wired

together, representing the flow of data through the application.

Selecting an output port, highlights all the compatible input ports

to which the user may connect it.

There are a number of data types within Yahoo! Pipes which

determine what inputs and outputs are compatible. In the most

general terms, there are simple scalar data values, and items,

which are sets of data objects (e.g., items in an RSS feed, or nodes

in an XML document). Values include types like text, urls,

locations, numbers, dates, and times.

In Yahoo! Pipes, data flows from the initial module(s), where

user-data are input, or external data are retrieved, through

subsequent modules in the pattern and order dictated by the wiring

diagram. All applications in Yahoo! Pipes have a single output

module, which is wired to the end of the execution sequence, and

collects the final data stream for distribution via RSS, JSON

(JavaScript Object Notation), or a variety of other formats.

Drawing on the Unix command-line metaphor, the output module

is akin to “standard out” or the user terminal.

Unlike the Unix command-line pipe, Yahoo! Pipes allows users to

define complex branching, and looping structures, have multiple

sources and execution paths executing in parallel, and in general,

create programs of arbitrary complexity. There is no direct

method for writing recursive functions, and Yahoo! Pipes does not

allow for cycles in the program structure (i.e., where the output of

a module is fed back to the input of a module further „upstream‟).

This enforces a mostly linear execution flow to the applications

which is bounded by the amount of data being processed.

2.1 View Source, Cloning, and Embedding
Each pipe application is individually addressed by a unique ID

and URL. Users may publish their pipes in the public directory,

where they can be searched, browsed, and viewed by anyone.

However, Yahoo! Pipes has a very open security model, allowing

any user to view and run any pipe, so long as they know the URL,

even if it is not published in the directory. This design was

intentional, as the Yahoo! Pipes developers wanted to foster the

kind of learning-by-example which Netscape‟s “View Source”

feature made easy in HTML. Thus, every pipe application which

is created has a “View Source” button attached to it, allowing

users to inspect how a pipe works. This allows users not only to

share links to their in-progress, and unpublished pipes, but view

and modify each others pipes; allowing users to collaboratively

debug problems.

Figure 1. The Yahoo! Pipes editing interface consists of four regions: the editing canvas, the module toolbox, the navigation bar,

and the debugger.

197

Figure 2. The social interaction network of participation in the Yahoo! Pipes discussion forums from December 2008.

Participants who appear in the conversational examples provided below have been identified.

198

When a pipe application is viewed by someone who is not the

owner of the pipe, a local copy is made in the viewer‟s browser.

Any changes that are made by the viewer are saved to a new copy

on the server, preserving the original pipe. Additionally, each pipe

has a “clone” button, which creates a copy of an existing pipe; it is

possible to make copies of one‟s own pipes or of other people‟

pipes.

In addition to entire pipes being copyable and modifiable, pipes

can be embedded within one another as a “sub-pipe”. This allows

developers to create and share reusable components, and generate

intermediate levels of abstraction in their applications. An

embedded sub-pipe is represented as a module in the Yahoo!

Pipes interface, which can be wired to other modules, or other

sub-pipes. Users can drill-down into embedded sub-pipes, to

inspect and modify the included functionality.

3. Conversations on Pipes
Our approach to understanding the issues users have with

developing Yahoo! Pipes applications has been to start with

looking at the conversations users are having about Yahoo! Pipes.

We actively monitored and followed the discussions on the

Yahoo! Pipes forums since February 2008. Additionally, we took

a complete snapshot of the forum contents on 01 December 2008;

this snapshot provides a full history of the forums dating back to

February 2007.

As of the first of December 2008, there are 2,081 participants in

the Pipes forums, participating in 2,548 conversations. In our

following of the forum discussions, we were non-systematically

reading and annotating posts which were interesting, and taking

notes on who was actively participating. For the purposes of this

study, we plotted the entirety of the Pipes discussion forums as a

social network where the social ties reflect a binary relationship of

“co-participating in the same conversation”. Figure 2 depicts

interaction network of Pipes discussion forum participants. The

most salient feature of the network is the division between the

core and the periphery. The core represents participants who are

interconnected, and the periphery are isolated sub-networks of

users who either post and receive no replies from others, or

receive replies from other isolated individuals, not connected to

the core.

We sampled several key members (i.e., hubs) from the network.

We then analyzed all the conversations involving the selected

participants for common patterns of interaction and problem

solving, paying attention to how problems were characterized,

localized, and resolved. We have highlighted, and labeled in

Figure 1, all of the developers1 that participate in the

conversational examples included later (note that not all

participants we studied have highlighted in the graph, only those

which are included in examples).

The Yahoo! Pipes discussion boards

(http://discuss.pipes.yahoo.com/) have been active since Pipes

was launched in February, 2007. The forums have been a

significant source of information on programming in Pipes, as

there is not much documentation for the language, merely some

tutorials and annotations. We have studied several snapshots of

the Pipes discussion forums over the past two years, the most

recent snapshot from December 2008.

1 All participant names have been changed; however, as the

gender of participants is not known, no attempt was made to

preserve gender when assigning pseudonyms.

Figure 3. The social interaction network of members of the Yahoo! Pipes discussion forums who have communicated with each

other in two or more threads. Participants who appear in the conversational examples provided below have been identified.

199

The discussions in the Pipes forums are divided into three areas:

Developer Help, General Discussion, and a section for showing

off Pipes applications. Table 1 provides some general statistics

about the activity of the forums as of 01 December 2008.

Table 1. Statistics of the Pipes developer forums through the

first of December 2008.

Pipes Forums

Activity Data
Developer

Help

General

Discussion

Show Off

Your Pipe

Number of

Threads
1731 576 241

Number of

unanswered posts
347 165 149

Avg. Thread

Length
3.85 3.18 1.69

Std. dev. of

Thread Length
4.06 3.26 1.12

Number of

participants
1523 638 236

Avg. num.

participants per

thread

2.34 2.14 1.34

Std. dev. of num

participants
2.13 2.06 0.70

Most of the activity on the Pipes discussion forums is question-

answer-type interactions in the Developer Help forum, a form of

social search. The majority of posts in this forum receive replies

of some kind. However, about one in five posts had not received a

response at the time of our data collection.

The question-answer-type interactions show up very clearly in

both Figure 2 and Figure 3 as evidenced by the clear definition of

hubs in the network, e.g., the large fan-shaped structure in Figure

2 (more pronounced in Figure 3), surrounding the user John.

Figure 3 is a filtered view of Figure 2, showing only those

members who have interacted in two or more conversation

threads. John is at the center of a large group of isolated

individuals who are not communicating much with each other. In

fact, John has actively contributed to over 990 threads in the

forums, or nearly 40% of all discussions. John actively responds

to new-comers and does a lot of question-answering, and resource

marshalling for other developers.

In the following sections we present several examples and

snippets of conversations, selected from the participants we

selected to study. We focus on conversations involving more than

one participant that illuminate the interactions developers have

around software debugging and collaborative problem solving.

4. Localizing Bugs
Software debugging is a major activity in the software

development process. Debugging consists of identifying,

localizing, and correcting/fixing errors in a software application

[11]. In debugging errors in Yahoo! Pipes, a common issue we

observed in many of the discussions was bug localization, i.e.,

determining the source or cause of the error. In a standard

programming debugging procedure, this usually involves stepping

through code, or inserting break points on statements, and watches

on data elements in order to determine precisely where the

program deviates from the expected behavior. However, many

debugging conversations in the Yahoo! Pipes discussion forums

are similar to the example provided in Figure 4.

Rob

I have created an images-only RSS feed that basically grabs

image such as these:

http://www.vrindavandarshan.com/yr2008/aug08/30aug2008_g

nf.jpg

The problem is the images are not showing up in-line as

"content", rather you have to click through to actually see them.

This makes the RSS feed rather useless for displaying inside

other modules or devices.

Could someone look at my pipe and let me know what I am doing

wrong? All I want is for the output of the RSS feed to simply

contain the 3 images of the day. Here's the pipe as far as I have

gotten it: http://pipes.yahoo.com/pipes/pipe.info?_

_id=cA3y8aJ23RGhv6G3_g6H4A

John

When I looked at your RSS feed -

http://pipes.yahoo.com/pipes/pipe.run?_id=cA3y8aJ23RGhv6G

3_g6H4A&_render=rss - the images were displayed. Are you

still not seeing the images? If so you will need to supply more

details about how you are viewing the RSS feed. It may be that

you are experiencing caching issues that should not last more

than about 30 minutes.

Rob

I'm trying to use Google Reader, which does not seem to show a

"preview" image in-line. I have to click through to each image

to see it. Maybe this is just a google reader thing, but I have

other feeds (eg, Dilbert web comic) that shows the image right

on the page.

John

When using "Expanded view" in Google Reader both the Dilbert

feed and you feed show images without any need for clicking.

At least, that's what I'm seeing. I can't see any "preview"

images for either feed in either List or Expanded view.

Rob

This is very strange, because the feed will not work for me unless I

manually load the images by typing the image URL directly into

the address bar first. After I do this, the image seems to

'preload' and then the RSS feed works fine. If I don't do this I

get a 403 forbidden error from the site.

Is there some standard template that can be used for creating an

RSS feed that is simply a group of images?

John

I think we are in the realm of browser/operating system/security

settings differences.

All I can say is that the feed works for me in Google Reader using

FF3 and W2K.

You may be able to find more help from the Google Reader Help

group. http://groups.google.com/group/Google-Reader-Help/

Figure 4. A discussion between Rob and John trying to

localize the source of an error.

In the exchange between Rob and John, we can see the

progressive peeling away of layers of abstraction and execution.

Rob begins with the assumption that there is a problem in his pipe

application, that he has caused an error. User John replies stating

that the pipe appears to work for him, and does not exhibit the

problematic behavior Rob is reporting; he offers the suggestion

that the problem may be in the caching behavior of the Yahoo!

Pipes platform. Rob responds that he thinks it might be a problem

200

of the Google Reader RSS viewer application, and not a problem

with his pipe or the Yahoo! Pipes cache. After several more

exchanges, John asserts that the problem is probably being caused

by an incompatible browser or operating system setting.

In this example, we can see that the potential sources of the errors

are far more numerous than typically considered in debugging.

Typically, when a program does not work as expected, the

programmer assumes there is a problem in his/her code, trusting

that the underlying compiler/interpreter, operating system,

networking stack, etc. are working properly. Rarely would we

expect an error in program execution to be caused by a bug in the

underlying operating system, for example. However, in Yahoo!

Pipes, the underlying infrastructure for interpreting and executing

the pipe application may itself have bugs; or the browser or other

application in which the pipe is being executed, or the output is

being rendered may be incompatible with certain aspects of the

Yahoo! Pipes system or data formatting; or there may be a

problem with improperly formatted data being fed into the pipe;

or some other problem further upstream in one of the data sources.

Many of these problems are outside the user‟s control, making

them nearly impossible to resolve.

While this problem may be particularly salient in the Yahoo!

Pipes context, given the additional layers introduced by the visual

language, we believe these problems to be inherent in mashup

programming in general. Web mashups are necessarily embedded

in a web of interdependent services, platforms, and data objects,

many of which are not as robust or verified as modern compilers,

or the underlying operating system stack. While web mashups are

often discussed in the context of the “web as operating system”,

the reality is that the web is not as stable or robust as a standard

desktop operating system. It is often that case that services have

bugs or fail, network connections are not reliable, and data are not

properly formatted (often because the standards are

underspecified).

In this example, we can also see the value of the exchange

between the two and the work of coming to a shared

understanding where a recommendation as to next steps makes

sense. Alone neither would have derived the solution and much of

the conversation is about explaining what each „sees‟ – actually

and conceptually.

Jones, Churchill, and Twidale framed these challenges within the

cognitive dimensions framework [9]. They argue that the existing

cognitive dimensions do not account for the additional complexity

and challenges imposed by the open, heterogeneous nature of the

mashup ecosystem, and point to the affordances development

tools, like Pipes, have for sharing and collaborative debugging as

a possible mechanism for cognitive offloading, and effective

resolution to complex problems.

5. Marshalling Resources
The Yahoo! Pipes development environment affords sharing and

building off of the work of others. This makes it easy for users to

point questioners to working solutions, rather than descriptions of

how to solve the problem. Often these solutions can be found in

existing pipes applications; occasionally they are constructed in

response to a specific question. Figure 5 is an exchange between

Harry and Don, in which Don points Harry to an existing solution,

after Harry has gone to great lengths to articulate his problem.

In this case, it would seem that the pipe being referenced is treated

as an informational commodity (c.f., [3]), which has implications

for how Harry comes to make sense of the program logic, and

apply it to his specific context. Indeed, in this particular thread,

Harry replies back stating that he was unable to integrate the

solution provided by Don into his problem. Don responds with a

pointer to a simpler version of the algorithm, presumably one

which is more commoditized and easier to consume.

Harry

Hi, I've just created a feed that contains several ones as input.

But I did not manage to extract the source name of each

feed.

Here is an example :

2 input = feedOne ans feedTwo

1 output = feedOne mixed with feedTwo

but for each title , I want :

<title message feedOne> + <name feedOne>

How can I do this?

Harry

I've found a way but it is not a pleasant one : after each Fetch

Module, I add a regExp module to change manually the title

of each post.

I published my pipe to show you : name is "Bourse (pipe

Harry)".

I would have prefered to find a way to extract the name of the

source rather than write it by myself.

Thanks for your help

Don

http://pipes.yahoo.com/pipes/pipe.info?_id=Qg5X6Rf82xG4xd

Yjdrq02Q

Harry

That's great, but I can't get your stuff to work with mine.

I ended up having to manually hack this crap, as suggested in

the first post on this thread. See "Fresh Gadget News Feed"

at http://pipes.yahoo.com/pipes/pipe.info?_id=

1PgGpDcE3BGxjDZsEpPZnA

Don

Why not? Clone/copy manually all my submodules, and

rebuild it yourself. It should work.

However, if that is too complicated to your likings, you can

use this other pipe:

http://pipes.yahoo.com/pipes/pipe.info?_id=Uqs_KBf82xG_av

vYjknRlg

It is simpler, but you have to insert the title yourself. Just have

to "Save a copy" and then replace each one of your

"Fetch"+"Regex" with one of those. The result will be

cleaner.

Figure 5. Harry is having trouble with a pipe, Don points

Harry to a solution, which Harry is unable to make work.

As was mentioned before, there is little formal documentation of

the Yahoo! Pipes platform. Thus, the discussion forums are a

primary source of information on how to do things in the Pipes

platform. Figure 6 shows user John helping Mary locate a

previous discussion which explains how to solve her problem.

John provides some basic explanation for how Mary can solve the

problem using a Google Spreadsheet, and points to a thread in

which it is explained how to import URLs from a Google

spreadsheet application into your pipe; helping contextualize the

offered solution.

201

Mary

For the past day or two I’ve been trying to save edits to and

republish this pipe, but Pipes cannot read any of the source

modules anymore in the edit mode. The pipe is

inordinately large, but it continues to function and output

RSS when any of the sources update. I just cannot save any

changes.

Here is the pipe:

http://pipes.yahoo.com/pipes/pipe.info?_id=6Fh8U37K2xG_

TTT_p2IyXQ

John

You could try using a Google spreadsheet to store your feeds

and title annotations.

See this thread:

http://discuss.pipes.yahoo.com/Message_Boards_for_Pipes/th

readview?m=te&bn=pip-

DeveloperHelp&tid=1100&mid=1100&tof=36&frt=2

Figure 6. John helps Mary by pointing her to a previous

discussion on the topic.

A further example of how users collaboratively marshal resources

can be seen in Figure 7. The exchange depicted in Figure 7

highlights collaborative information retrieval behavior (c.f., [10]),

where John and Susan are collecting tutorials for Tim to use. John

even goes so far as to cite the sources for the links he is offering,

pointing Tim towards new information resources for future

reference. Granted, this is a rather simple example of social search

behavior, and many of the other examples provided point to more

complex conversations through which the information need is

articulated and explicated, and hopefully resolved.

Tim

Can anyone show me a simple way to integrate a pipe in your

own site? I cannot find that information anywhere.

John

Hopefully these links will help.

http://blog.pipes.yahoo.com/2007/06/12/working-with-pipes-

on-your-web-site/

This link is from the Pipes Blog (http://blog.pipes.yahoo.com/)

http://www.hunlock.com/blogs/Yahoo_Pipes--

RSS_without_Server_Side_Scripts

This link is from the Pipes del.icio.us pages

(http://del.icio.us/rss/pipes.yahoo.com).

Susan (superspacetyrant)

This worked for me.

http://comments.deasil.com/2007/02/19/pipejax-pure-

javascript-version-yahoo-pipes-to-ajax-bridge/

Figure 7. John and Susan point Tim to several tutorials for

embedding Pipe output in a webpage.

6. Peripheral Participation
The partition of the Pipes forum into a core and periphery (see

Figure 2) raises questions of what is happening in the periphery of

the network, why so many people are disconnected from the rest

of the network, and why posts are going unanswered. We have

observed several patterns of interaction in the periphery which

may explain the divide between it and the core, these include:

people asking questions and not getting replies, people replying to

themselves, and people getting responses and not returning.

The most obvious reason for why some people are isolated from

the rest of the social group is that no one is replying to their posts.

The reasons for this may be simple netiquette, the perception of

naiveté, or possibly that other users are not experiencing the same

problem.

For example, when a user asks, “i‟m new to this Pipes. one quick

question how can i make rss feed (Pipes) from the forum in yahoo

groups even though i‟m not signed in?”, this question reflects a

lack of familiarity with the technology which does not support

authenticated requests, and of the community which has

extensively discussed adding authentication to Pipes. In another

example, a user asks, “I was editing a large and complicated pipe

last night - and it started giving me „Problem saving‟ errors

periodically. At some point I gave up and exited out. This

morning I discovered that the entire pipe is EMPTY now. …

Anyone else having trouble saving and previewing frequently?” In

this case, if no one else is having problems, there is little

motivation to respond to this question.

Stan

I am trying to build a web service with pipes and I am unable

to get the results parsed correctly upon return. I even took the

example servlet code to handle the post action but still get a

unable to parse response: {"items": [{ "description": "...

response within the editor.

Has anyone else had any luck building a "Web Service" and

getting the results parsed.

Stan

I just answered my own question. The path to item list needed

to be plural items not item singular.

Figure 8. User Stan answering his own question.

We also have seen users posting responses to their own questions.

It is often the case that a user has resolved the problem they

initially posted, although they may also be replying back with

additional information. An example of the former is given in

Figure 8, where Stan posts a question about a problem he is

having and answers it. This kind of self-response is common,

happening 126 times in the entire dataset, 66 times in the

Developer Help forums. These conversations provide

documentation of a problem coupled with a resolution that allows

them to be searched and used by other developers who may be in

similar situations.

Table 2. As the network size increases over time, the density of

edges in the network also increases.

 # Nodes # Edges
Avg.

Degree
Degree

Centrality

Mar-07 369 2084 5.65 0.21

Jun-07 697 4320 6.20 0.32

Sep-07 892 5394 6.05 0.26

Dec-07 1090 6984 6.41 0.32

Mar-08 1279 8186 6.40 0.36

Jun-08 1551 10374 6.69 0.40

Sep-08 1809 13401 7.41 0.45

Dec-08 2081 15962 7.67 0.49

202

The activity in the periphery may be interpreted as “legitimate

peripheral participation” [12]. Legitimate peripheral participation

describes the evolving role of members of a community of

practice, from newcomers, to old-timers. If this is indeed the case,

we expect to see a trend of members moving from the periphery

towards the core of the network, as their involvement in the

community increases with their increased experience. This

movement towards greater connectivity would be reflected in an

increase in edge density in the graph over time.

Table 2 shows that the average degree of the nodes in the graph

does increase over time, indicating that the network is becoming

more connected as it grows in size. However, as the network

grows, the network is becoming more centrally organized, as

indicated by the increasing degree centrality of the network over

time. At first, this might appear to counter the findings of

Crowston & Howison [4] which showed that larger open-source

communities have less centralized control; however, the actual

degree centrality (0.49) for the Pipes community as of December

2008, when there were 2081 members of the community, is not

inconsistent with some larger community networks Crowston &

Howison studied.

The evolution of the Pipes community forum does seem to follow

the progression of expertise as described by Lave and Wenger,

although the trend towards increased participation is not very

strong. Most developers only contribute a limited number of

times, and do not sustain engagement in the community. Figure 9

shows the percentage of members of the network who are actively

participating new messages to the discussion over time. The

percentage who engages in active conversation drops over the past

two years. This might be due to the transactional nature of

question-answer format discussions, where participants ask a

question, get an answer, and leave.

Figure 9. Percentage of community active over time.

It is not clear how to reconcile the observation that the network is

becoming more interconnected, but the relative proportion of the

community actively engaging in the conversations is dropping.

One explanation might be that the community is maturing,

achieving a relatively stable core of active experienced members

and old-timers. This stable core reaches out to new comers,

responding to questions, reinforcing the star-shaped structure of a

centralized network. Although the relative percentage of active

participants has dropped, the total size of active discussants has

remained relatively constant, ranging between 236 and 377 (avg

of 291) active participants (see Figure 10). This might indicate a

“natural size” for this community in terms of the number of active

conversations that can be managed and maintained

simultaneously.

Figure 10. Raw number of active participants over time.

7. Conclusions
This paper has outlined a preliminary analysis of issues

commonly discussed among user-developers of the Yahoo! Pipes

visual languages. Yahoo! Pipes seeks to support end-user

programming of web mashups, and provides an expressive visual

language and programming environment in which users can create

mashup applications. However, there are many challenges end-

user programmers face in developing mashup applications, both

with and without the support of visual programming tools like

Yahoo! Pipes.

The role of developer communities, like the Pipes community, in

helping people resolve their programming problems is only

beginning to be understood. Coding communities serve as a vital

resource in localizing bugs in applications. This is facilitated

where code is easily shared among members. Communities also

serve as a resource for direct problem solving, helping developers

accomplish a goal, although the extent to which help seekers are

able to interpret and understand the solutions provided is unclear.

The collaborative marshalling of information and resources, both

from the Pipes ecosystem and the larger web, highlight a social

element to software development which is often ignored in the

design of current software development tools, e.g., debuggers. As

the complexity of the development context grows, and the number

of interdependencies between elements increases, with increasing

abstractions and indirections, so too does the complexity of the

debugging and problem solving. Rooting out the source of a

problem may touch on more systems than the developer is aware

of, and this is where the diverse knowledge and expertise of a

community of developers is able to help individuals navigate the

issues and sort out solutions. These conversations not only serve

the immediate needs of their participants, but serve as public

records for future search and are actively referenced and sourced

by the community as such. The conversational medium does not

necessarily produce well-structured or well-organized

documentation, but it is a de facto documentation.

The Pipes community also highlights the role of the periphery in

the community process, where at first glance it may appear not

much is happening, developers are engaged in collective

documentation and problem solving. We do not understand very

well what is happening in the periphery of coding communities,

and how engaged those persons are in the „community‟. However,

the periphery is not entirely void of activity, and in future work,

0%

10%

20%

30%

40%

50%

60%

Jun-07 Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Dec-08

0

100

200

300

400

Jun-07 Sep-07 Dec-07 Mar-08 Jun-08 Sep-08 Dec-08

203

we wish to dive deeper into the dynamics of peripheral

engagement. Do members make their way from the periphery

towards to core? We also wish to understand how these

conversations are not only directly serving the current participants

in their immediate programming needs, but also are being

searched, viewed, and reused in future programming contexts by

other developers, who may never post questions or comments to

the forums at all.

8. References
[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, S. R.

Klemmer. (2009). Two Studies of Opportunistic

Programming: Interleaving Web Foraging, Learning, and

Writing Code. In Proceedings of CHI 2009.

[2] M. Burnett (1999) Visual Programming. In: Wiley

Encyclopedia of Electrical and Electronics Engineering (J.

Webster, ed) John Wiley & Sons, Inc.

[3] B. Dervin, P. Dewdney (1986). Neutral questioning: A new

approach to the reference interview. Research Quarterly, 25

(4), 506-513.

[4] K. Crowston & J. Howison (2005). The social structure of

Free and Open Source software development. First Monday,

February, 2005.

[5] I. R. Floyd, M. C. Jones, D. Rathi & M. B. Twidale (2007)

Web Mash-ups and Patchwork Prototyping: User-driven

technological innovation with Web 2.0 and Open Source

Software. In Proceedings of HICSS‟07.

[6] T. R. G. Green & M. Petre (1996) Usability Analysis of

Visual Programming Environments: A „Cognitive

Dimensions‟ Framework. Journal of Visual Languages and

Computing 7, 131-174.

[7] C. A. Halverson, J. B. Ellis, C. Danis, & W. A. Kellogg,

(2006). Designing task visualizations to support the

coordination of work in software development. In

Proceedings of CSCW '06. 39-48.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt, & R. E. Grinter,

(2000). Distance, dependencies, and delay in a global

collaboration. In Proceedings of CSCW '00. 319-328.

[9] M. C. Jones, E. F. Churchill, & M. B. Twidale (2008).

Mashing Up Visual Languages and Web Mashups. In the

Proceedings of the 2008 IEEE Symposium on Visual

Languages and Human-Centric Computing.

[10] M. Karamuftuogulu (1998). Collaborative Information

Retrieval: Toward a social informatics view of IR

interaction. JASIST 49(12):1070-1080.

[11] I. R. Katz and J. R. Anderson (1987). Debugging: An

Analysis of Bug-Location Strategies. In Human-Computer

Interaction. vol. 3: Taylor & Francis.

[12] J. Lave & E. Wenger (1991). Situated Learning: Legitimate

Peripheral Participation. Cambridge University Press:

Cambridge, UK.

[13] R. Lougher & T. Rodden. (1993) Supporting long-term

collaboration in software maintenance. In the Proceedings of

the conference on Organizational computing systems.

[14] M. B.Rosson, J. Ballin & J. Rode (2005). Who, What, and

How: A Survey of Informal and Professional Web

Developers. In Proceedings of VL/HCC„05.

[15] S. Sawyer, J. Farber, R. Spillers (1997). Supporting the

social processes of software development Information

Technology & People, 10(1): 46.

[16] J. Stylos, B. Graf, D. Busse, C. Ziegler, R. Ehret & J.

Karstens (2008). A Case Study of API Redesign for

Improved Usability. In the Proceedings of VL/HCC 2008.

[17] J. Stylos and B. A. Myers.(2006). Mica: A Web-Search Tool

for Finding API Components and Examples. In Proceedings

of VL/HCC 2006.

[18] J. Stylos & B. Myers (2007). Mapping the Space of API

Design Decisions. In the Proceedings of the 2007 IEEE

Symposium on Visual Languages and Human-Centric

Computing.

[19] A.T.T Yang, J.L Wright, & S. Abrams. (2005). Source code

that talks: an exploration of Eclipse task comments and their

implications to repository mining. ACM SIGSOFT Software

Engineering Notes, 30(4).

[20] N. Zang & M. B. Rosson. (2008). What‟s in a mashup? And

why? Studying the perceptions of web-active end users. In

the Proceedings of the 2008 IEEE VL/HCC.

204

