
ISSN 1861-4280

volume 2 issue 2
2005

Editors:

Yvonne Dittrich
Paul Dourish
Anders Mørch
Volkmar Pipek
Gunnar Stevens
Bettina Törpel

Guest Editors:

Volkmar Pipek
Markus Rohde

Publisher:
IISI - International Institute
for Socio-Informatics

international reports
on
socio-informatics

Table of contents

Table of contents.. 2
Impressum ... 3

Supporting Appropriation Work: A Workshop Report 4

Volkmar Pipek

Three Contexts of Appropriation for an Urban Simulation
System .. 9

Alan Borning,
Janet Davis

Mobile Collaborative Software Adaptation 15
Matthew Chalmers,
Malcolm Hall,
Marek Bell

Socio-Technical Self-Descriptions as a Means for
Appropriation ... 21

Gabriele Kunau,
Thomas Herrmann,
Kai-Uwe Loser

Supporting Appropriation Work with Social Translucence,
Collective Sensemaking, and Social Scaffolding............................ 30

Wendy A. Kellogg,
Thomas Erickson

Leveraging the language action perspective for system
accountability and end user configurability 44

Gianni Jacucci,
Diego Calzà,
Vincenzo D’Andrea
Arthur B. Baskin
Ina Wagner

What’s in a name? Exploring the connections between
abstraction and appropriation .. 52

M. Cameron Jones,
Michael B. Twidale

Design for appropriation of ubiquity in information systems........ 60
Riad Lemhachheche

Studying Appropriation in Activity-Centric Collaboration 63
Michael J. Muller,
Suzanne O. Minassian,
Werner Geyer,
David R Millen,
Elizabeth Brownholtz,
Eric Wilcox

Let's harness IT for our purposes...! .. 72
Bettina Törpel

2

“Let them use emacs”: the interaction of simplicity and
appropriation.. 78

Michael B. Twidale,
M. Cameron Jones

Supporting Configuring as Appropriation Work 85
Ina Wagner
Ellen Balka

Groupware Construction with the Oregon Software
Development Process ... 93

Till Schümmer
Radical Appropriation: The Configurations of Wireless
Networking in a Community Group.. 100

David W. McDonald
‘Reflective User’ in Practice: Explorations from two cases 108

Samuli Pekkola

Discussion Report: Simplicity and Appropriation 113

Paul Dourish,
Thomas Herrmann,
Wendy A. Kellogg,
and Gabriele Kunau

Biographies .. 117

The ‘international reports on socio-informatics’ are an online report series of the International Institute for
Socio-Informatics, Bonn, Germany. They aim to contribute to current research discourses in the fields of
‘Human-Computer-Interaction’ and ‘Computers and Society’. The ‘international reports on socio-informatics’
appear at least two times per year and are exclusively published on the website of the IISI.

Impressum

IISI - International Institute for Socio-Informatics
Heerstraße 148
53111 Bonn
Germany

fon: +49 228 6910-43
fax: +49 228 6910-53
mail: contact@iisi.de
web: http://www.iisi.de

3

mailto:contact@iisi.de
http://www.iisi.de

Supporting Appropriation Work:
A Workshop Report
Volkmar Pipek
Int. Institute for Socio-Informatics, Bonn, Germany,
and University of Oulu, Finland
volkmar.pipek@iisi.de

Abstract. A significant amount of research in the field of Computer-Supported
Cooperative Work has been done to understand the mutual shaping of collaboration
technologies and work practices. The outcome of such research helped improving the
design of information systems as well as improving the related design processes with
regard to a better technology-practice fit. Nevertheless, the approaches to support the
related activities focused on design work and designer activities. With a workshop at the
European Conference on Computer-Supported Cooperative Work in 2005, we opened a
forum for research that focuses on supporting ‘appropriation work’, the activities that
users engage in to shape and make sense of the technologies that are provided to them
from different design arenas. The workshop established a broader research focus on
technological and non-technological approaches to support users in reflecting and re-
designing the use (and non-use) of collaborative technologies.

1 Introduction
The CSCW community was always aware of the fact that not only designer’s
skills contribute to successfully putting collaborative technologies into practice. It
also requires user activities, and these should be addressed:

<…> a CSCW system should provide facilities supporting users in appropriating, exploring,
modifying, negotiating etc. - cooperatively and yet distributed - ‘community handbooks’ that
are openly incomplete and inconsistent. Providing support for distributed cooperative

4

appropriation, circumvention, modification of the system is, perhaps, the toughest challenge in
designing computer systems for cooperative work. (Schmidt 1991)

However, research regarding ‘appropriation’ of CSCW systems developed in two
main directions. Studies on the evolving use of CSCW systems (Orlikowski 1992,
Robertson 1998, Karsten and Jones 1998, Pipek and Wulf 1999, Dittrich et al.
2002, Hansson et al. 2003, Törpel et al. 2003, Karasti and Syrjänen 2004)
described ‘appropriation’ as a phenomenon or process to improve the
understanding of the critical success factors of the use of collaborative tools. On
the one hand the studies clarified the importance of the user’s contributions to the
successful establishment of collaborative technology, and stressed the notion that
appropriation often goes beyond the intentions and expectations that have been
associated with the original design of a collaborative technology. On the other
hand most of the research maintained an analytical perspective on the
phenomenon of appropriation, and did not give advice on how to stimulate or
support appropriation activities.
Several prerequisites for supporting user activities have been developed.
Regarding approaches with a technological focus, concepts of (re-)designing
technologies during use (to make CSCW systems ‘tailorable’) have been
developed. The research trajectory here started with the introduction of
‘tailorability’ as a requirement for collaborative technologies (Trigg et al. 1987,
Henderson and Kyng 1991). The “architectural” perspective then explored
tailorability to develop concepts and examples for very flexible software systems,
which could be tailored to their use scenarios (Maclean et al. 1990, Malone et al.
1992, Morch 1997, Stiemerling and Cremers 2000). Object-Orientation (Morch
1997) and Component-Based Systems (Stiemerling and Cremers 2000) have been
explored to increase the flexibility of software artefacts, other approaches
addressed issues of analyzing, separating and composing tailoring entities along
the typical functionality of CSCW systems (Malone et al. 1992, Teege 2000).

The “user-interface” perspective explored how tailorable software should
present itself to the tailors. Henderson and Kyng (Henderson and Kyng 1991)
distinguished three levels of tailoring (choosing between predefined alternatives,
constructing new artefacts from existing pieces, and reprogramming the artefact)
that require different levels of expertise regarding the supporting technology.
Obviously, ordinary groupware users cannot be expected to acquire programming
skills to be able to tailor an artefact accordingly. Several approaches, some
inspired by Nardi’s (1993) work on end-user programming, aim at developing
tailoring environments that provide simple concepts and interfaces for end-users
(MacLean et al. 1990, Malone et al. 1992, Stiemerling et al. 1997, Teege 2000,
Liebermann et al. 2005).

Approaches to support collaborative tailoring (e.g. Kahler 2001, see overview
in Pipek and Kahler 2005) stressed the social dimensions of tailoring work, but
still suffered from several weaknesses:

5

! They still maintain a ‘designer’ perspective by focusing on tailoring
one tool, while the users at the workplace face the challenge of
orchestrating the diversity of tool infrastructures, interdependencies and
restrictions. (Robertson 1998, Dourish 2003, Pipek 2005b)

! They focus on supporting altering tool configurations and settings, but
not tool usages. The latter does not necessarily involve altering a tool
(see example of using a comment field of a helpline’s database in
Orlikowski 1996).

! They often support only indirect user-user-interaction (e.g. by
providing shared configuration repositories) instead of direct
communication (e.g. for negotiation and sensemaking).

Latest research approaches tried to combine these two research traditions of
‘tailoring/end-user development’ and ‘appropriation studies’ to provide concepts
to improve appropriation support (Dittrich et al. 1998, Dourish 2003, Pipek
2005a) and that allow users an active and collaborative reflection of their use of
CSCW systems.

2 Workshop Course and Results
The workshop attracted more than 30 researchers from areas like Human-
Computer Interaction, Psychology, Work Sciences, etc. The diversity has been
present in the submissions, and it is present in the extended position papers that
we present in this special issue.
21 researchers found their way to the conference site in Paris, France. After an
introductory discussion the workshop participants divided up into four discussion
groups that focused on ‘Appropriation and Ubiquitous Computing’, ‘Affordances
for Appropriation’, ‘Organisation of Use vs. Design/Appropriation Processes’,
and ‘Simple systems and social structures’. A final discussion about future
research agendas concluded the workshop.
This special issue collects the position papers of the workshop as extended
versions of the original submissions. This allowed the authors to integrate the
results from the workshop discussions into their argument.
In addition, the group discussing the topic of ‘Simple systems’ also provided a
discussion report that concludes this special issue.

3 Acknowledgements
I’d like to thank the other workshop organisers Yvonne Dittrich, Paul Dourish,

Anders Mørch, Gunnar Stevens and Bettina Törpel for sharing the research
initative towards supporting appropriation work with me. Matthias Betz and
Veronika Voigt helped in completing this special issue.

6

4 References
Dittrich, Y. (1998): How to make Sense of Software - Interpretability as an Issue for Design, Dep.

of Computer Science and Business Administration, University of Karlskrona/Ronneby, TR
98/19, Ronneby, Sweden, 1998, 9.

Dittrich, Y., Eriksen, S. and Hansson, C. (2002): PD in the Wild; Evolving Practices of Design in
Use. in Participatory Design Conference, (Malmö, Sweden, 2002), CPSR, 124-134.

Dourish, P. (2003): The Appropriation of Interactive Technologies: Some Lessons from Placeless
Documents. Computer Supported Cooperative Work (CSCW) - The Journal of Collaborative
Computing, 12 (4). 465-490.

Hansson, C., Dittrich, Y. and Randall, D. (2003): "The development is driven by our users, not by
ourselves" - Including Users in the Development of Off-The-Shelf Software. in 26th
Information Systems Research Seminar in Scandinavia (IRIS 26), (Haikko Manor, Finland,
2003), IRIS Association.

Henderson, A. and Kyng, M. (1991): There's no place like home: Continuing Design in Use. in
Greenbaum, J. and Kyng, M. eds. Design at work: Cooperative Design of Computer
Systems, Lawrence Erlbaum Ass., Hillsdale, NJ, 1991, 219-240.

Kahler, H. (2001) Supporting Collaborative Tailoring, PhD Thesis, Department of
Communication, Journalism and Computer Science, Roskilde University, Roskilde, 2001.

Karasti, H. and Syrjänen, A.-L. (2004): Artful Infrastructuring in two cases of community PD. in
Participatory Design Conference (PDC'04), (Toronto, Canada, 2004), CPSR, 20-30.

Karsten, H. and Jones, M. (1998): The long and winding road: Collaborative IT and organisational
change. in Int. Conference on Computer Supported Work (CSCW'98), (Seattle, WA, USA,
1998), ACM Press, 29-38.

Lieberman, H., Paternó, F. and Wulf, V. (eds.) (2005): End User Development. Kluwer,
Dordrecht, NL, in press.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T.P. (1990): User-Tailorable Systems:
Pressing the Issue with Buttons. in Int. Conference on Computer-Human-Interation
(CHI'90), (Seattle, WA. USA, 1990), ACM Press, 175-182.

Malone, T.W., Lai, K.-Y. and Fry, C. (1992): Experiments with Oval: A Radically Tailorable Tool
for Cooperative Work. in Int. Conference on CSCW (CSCW'92), (Toronto, Canada, 1992),
ACM Press, 289-297.

Morch, A. (1997): Three Levels of End-user Tailoring: Customization, Integration, and Extension.
in Kyng, M. and Mathiassen, L. eds. Computers and Design in Context, MIT Press,
Cambridge, MA, USA, 1997, 51-76.

Nardi, B.A. (1993): A small matter of programming. Perspectives on End-User Programming.
MIT Press, Cambridge, Massachusetts, 1993.

Orlikowski, W.J. (1992): Learning from Notes: organizational issues in groupware
implementation. in Proceedings of the 1992 ACM conference on Computer-supported
cooperative work, (Toronto, Ontario, Canada, 1992), 362-369.

Orlikowski, W.J. (1996): Evolving with Notes: Organizational change around groupware
technology. in Ciborra, C.U. ed. Groupware & Teamwork, Wiley, Chichester, 1996, 23 - 60.

Pipek, V. (2005a): From Tailoring to Appropriation Support: Negotiating Groupware Usage
Faculty of Science, Department of Information Processing Science (ACTA
UNIVERSITATIS OULUENSIS A 430), University of Oulu, Oulu, Finland, 2005, 246.

Pipek, V. (2005b): Negotiating Infrastructure: Supporting the Appropriation of Collaborative
Software. Scandinavian Journal on Information Systems. (submitted).

7

Pipek, V. and Kahler, H. (2005): Supporting Collaborative Tailoring. in Lieberman, H., Paterno,
F. and Wulf, V. eds. End-User Development, Kluwer, Dordrecht, NL, 2005, to be published.

Pipek, V. and Wulf, V. (1999): A Groupware's Life. in European Conference on Computer
Supported Cooperative Work (ECSCW'99), (Copenhagen, Denmark, 1999), Kluwer,
Dordrecht, Netherlands, 199-218.

Robertson, T. (1998): Shoppers and Tailors: Participative Practices in Small Australian Design
Companies. Computer Supported Cooperative Work (CSCW), 7 (3-4). 205 221.

Schmidt, K. (1991): Riding a tiger, or Computer Supported Cooperative Work. in Proceedings of
the Second European Conference on Computer-Supported Cooperative Work, (Amsterdam,
NL, 1991), Kluwer Academic Publishers, 1-16.

Stiemerling, O. and Cremers, A.B. (2000): The EVOLVE Project: Component-Based Tailorability
for CSCW Applications. AI & Society, 14. 120-141.

Stiemerling, O., Kahler, H. and Wulf, V. (1997): How to Make Software Softer - Designing
Tailorable Applications. in DIS '97, (Amsterdam, 1997), ACM Press, 365-376.

Teege, G. (2000): Users as Composers: Parts and Features as a Basis for Tailorability in CSCW
Systems. International Journal of Computer-Supported Cooperative Work, 9 (1). 101-122.

Törpel, B., Pipek, V. and Rittenbruch, M. (2003): Creating Heterogeneity - Evolving Use of
Groupware in a Network of Freelancers. Special Issue of the Int. Journal on CSCW on
"Evolving Use of Groupware", 12 (4). 381-409

Trigg, R.H., Moran, T.P. and Halasz, F.G. (1987), Adaptability and Tailorability in NoteCards. in
INTERACT'87, (Stuttgart, Germany, 1987), 723-728.

8

Three Contexts of Appropriation for an
Urban Simulation System
Alan Borning,
Janet Davis
Department of Computer Science & Engineering University of Washington
Seattle, Washington 98195, USA
{borning, jlnd}@cs.washington.edu

Abstract. UrbanSim is an integrated land use and transportation simulation system. Its
purpose is to help inform public deliberation and decision-making regarding major land
use and transportation decisions, by simulating the consequences of different alternatives
for an urban region over periods of twenty to thirty years. Indicators provide the primary
tool for portraying key results from the simulations to users. We describe three contexts
of appropriation for UrbanSim. The first is appropriation by different metropolitan regions,
to simulate urban development in those regions. The second is appropriation by
advocacy groups, business associations, and other organizations, which can use an
Indicator Perspectives mechanism to present their particular viewpoint on what is
important to measure in the simulation results and how it should be interpreted. The third
is appropriation by individuals, using Personal Indicators to help understand how
decisions would affect them personally.

1 Introduction
In many regions in the United States and globally, there is increasing concern
about pollution, traffic jams, resource consumption, loss of open space, loss of
coherent community, lack of sustainability, and unchecked sprawl. Elected
officials, planners, and citizens in urban areas grapple with these difficult issues
as they develop and evaluate alternatives for such decisions as building a new rail

9

line or freeway, establishing an urban growth boundary, or changing incentives or
taxes. These decisions interact in complex ways, and, in particular, transportation
and land use decisions interact strongly with each other. To help the
understanding of the long-term consequences of these decisions, Waddell,
Borning, and their colleagues have been developing UrbanSim, a large simulation
package for predicting patterns of urban development for periods of twenty years
or more, under different possible scenarios (Waddell and Borning, 2004).
UrbanSim’s primary purpose is to provide urban planners and other stakeholders
with tools to aid in more informed decision-making, with a secondary goal to
support further democratization of the planning process.

As Schmidt (1991) points out, models are limited abstractions and must evolve
with the world they reflect. Users should be able to appropriate systems creatively
to adapt them to particular situations. One important characteristic of the urban
planning domain is that it centers on public deliberation and decision-making
involving multiple stakeholders, who often have very different values and
perspectives with respect to land use and transportation. Furthermore, each
region in which UrbanSim has been applied has unique physical, social, and
political characteristics. In this position paper, we discuss three contexts of
appropriation of UrbanSim: by urban planners and modellers in different urban
regions, by advocacy groups and other organizations, and by individual citizens.
The first is operational and the others in the early design stages.

2 Appropriation by Different Metropolitan
Regions

From the start of the project, UrbanSim has been designed as a reusable modeling
system, for use by many different metropolitan regions—which, given the
variation among regions, requires that it be designed for appropriation by urban
planners and modellers. To date, UrbanSim has been applied experimentally in
the U.S. in metropolitan regions around Eugene/Springfield, Oregon; Seattle,
Washington; Honolulu, Hawaii; and Salt Lake City, Utah. Working largely
independently of the UrbanSim team, groups have also experimentally applied
UrbanSim in Houston, Texas; Phoenix, Arizona; Paris, France; and Tel Aviv,
Israel; with other applications in process. UrbanSim played a significant role in
an out-of-court settlement in Utah regarding a major freeway construction project
(Waddell and Borning, 2004). The first major use in a public planning process is
scheduled to begin in the Puget Sound (Seattle) region in summer 2005.

To enable the UrbanSim software engineering team to respond more readily to
requests from modellers applying the system in different regions, the system
architecture uses a collection of component models that interact via a shared
database rather than by invoking each other directly (Noth et al., 2003). This

10

modular architecture, implemented in Java, makes it easier to modify individual
component models without modifying other components of the system. The team
also uses an agile development methodology (Freeman-Benson and Borning,
2003), to be more flexible and responsive to modeller requests.

Licensing UrbanSim under the GNU Public License is another important step
in supporting appropriation for different regions. While open source licensing is
familiar in computer science, it is less common in urban modelling. Most urban
simulation systems are proprietary, and there are a variety of barriers to sharing
code improvements among the government agencies in different regions. By
contrast, UrbanSim is freely available for download from the project website
(http://www.urbansim.org). Downloadable information includes the source code,
executable code, a sample dataset, and a user manual.

As open source software, all parts of the system can be modified by the end
users, but of course this is not always easy in practice. One part of the system
where such extension is more straightforward is in the mechanisms for computing
and viewing indicators. In urban planning, indicators are often used to monitor
changes in a region with respect to specific attributes of concern. In UrbanSim,
simulation results can be presented using the same set of selected indicators for all
the policy alternatives being considered, aiding the assessment and comparison of
different scenarios. To make it easier to modify or add new indicators, raw
simulation results are stored in an SQL database. The indicator computations are
then expressed as SQL queries, decoupling them from the simulation itself. We
have also done considerable design and testing work on the indicator
documentation and interface, addressing issues such as information fragmentation
and transparency of the system, and ensuring that documentation about the
indicators is ready-to-hand in the course of using them (Borning et al., 2005).

The software engineering group had hoped that writing the Java source code
well, with good abstractions, coding style, comments, and documentation, would
enable the domain experts (modellers) to read the code and make some changes—
in other words, to support a further level of appropriation. However, this rarely
happened in practice, because modellers found Java and its interactive
development environment too daunting. However, the software engineering group
found that the modellers are willing to read and write in a high-level scripting
language, namely Python. Another factor has been a desire to join forces with
other land use and transportation modelling groups world-wide, to provide a
common platform and system that enables greater sharing and collaboration. In
response, the group has built a new Python framework, the Open Platform for
Urban Simulation (OPUS), and begun the process of converting UrbanSim to be
built on this framework. We have already found that the modellers are indeed
willing to read and make simple changes to the Python code.

As another step toward supporting appropriation by the wider community of
modelers, a group at the University of Massachusetts has established the

11

UrbanSim Commons (http://www.urbansimcommons.org). The UrbanSim
Commons provides a place where UrbanSim users and developers can share
knowledge and experiences.

3 Appropriation by Organizations
A recent paper (Borning et al., 2005) discusses the development of Technical
Documentation for UrbanSim indicators, guided by the Value Sensitive Design
theory and methodology (Friedman et al., in press). As much as possible, the
Technical Documentation is intentionally neutral, and does not advocate for any
particular use of the indicators to evaluate policy alternatives. Yet, the planning
process is rife with strong opinions and perspectives. Indicator Perspectives
support organizations in appropriating UrbanSim indicators and simulation results
to advocate for their own positions. In the Indicator Perspectives section of the
UrbanSim website, a set of organizations each present their own views on which
indicators are most important for evaluating policy alternatives, and how those
indicators should be interpreted. We believe that these perspectives will be also
useful to stakeholders and decision makers because the organizations have well
thought-out positions and can present them clearly and coherently. Indicator
Perspectives are intended to provoke thought and public deliberation, as well as to
give groups a venue in which to state their positions.

We are currently in the early stages of developing Indicator Perspectives. We
have partnered with three local organizations to construct perspectives for the
initial prototype: a government agency (King County Budget Office, which
publishes the King County Benchmark Reports), a business association
(Washington Association of Realtors), and an environmental group (Northwest
Environment Watch). Later, we plan to provide opportunities for involvement to
all who are interested, actively soliciting partners as needed to help ensure
continuing coverage of the political and policy space.

4 Appropriation by Individuals
A natural question for any citizen learning about a new government policy is,
“How will this affect me?” A new mechanism under development, Personal
Indicators, is intended to address this question for land use and transportation
policy alternatives simulated with UrbanSim. As this question is necessarily tied
to each citizen’s particular situation, users of Personal Indicators will begin by
providing some information via a web-based interface about their situation, such
as the neighbourhoods in which they live and work, approximate household
income, and the number of adults and children in the household. Values of
Personal Indicators for the simulated future under each policy alternative would

12

then be provided. Rather than reflecting the region as a whole, Personal Indicators
will reflect the user’s individual and family situation: for instance, the amount of
time required for the user’s commute to and from work, the mix of commercial
and residential construction in the user’s neighbourhood, and housing options
throughout the region for similar households.

We hypothesize that Personal Indicators can help to engage citizens in the
urban planning process by addressing the question, “How will this affect me?”
They may also be more comprehensible to ordinary citizens than indicators at the
metropolitan level, because they can be readily related to an individual’s everyday
experiences of living, working, and getting around in the region. However,
Personal Indicators also raise significant questions for the use of UrbanSim in a
democratic society. How can we resolve tendencies to take a short-term view of
the future and with the long-term view required by regional planning? How can
we balance an individual’s self-interest with interests of other individuals and the
good of the region as a whole? How can citizens using Personal Indicators
engage in deliberation when each has a different view of the future?

5 Acknowledgments
Thanks to Peyina Lin for her feedback on this paper. This research has been
supported in part by the U.S. National Science Foundation under Grant Nos. EIA-
0121326 and IIS-0325035, and in part by gifts from IBM and Google.

6 References
Borning, A., Friedman, B., Davis, J., and Lin, P. (2005): ‘Informing Public Deliberation: Value

Sensitive Design of Indicators for a Large-Scale Urban Simulation’, to appear at the 9
th

European Conference for Computer-Supported Cooperative Work (ECSCW 2005).
Freeman-Benson, B., and Borning, A. (2003): ‘YP and Urban Simulation: Applying an Agile

Programming Methodology in a Politically Tempestuous Domain’, Proceedings of the 2003
Agile Development Conference, Salt Lake City, Utah, June 2003.

Friedman, B., Kahn, P. and Borning, A. (in press): ‘Value Sensitive Design and Information
Systems’, to appear in P. Zhang & D. Galletta (eds.): Human-Computer Interaction in
Management Information Systems: Foundations, M.E. Sharpe, New York. Available from
www.ischool.washington.edu/vsd.

Noth, M., Borning, A., and Waddell, P. (2003): ‘An Extensible, Modular Architecture for
Simulating Urban Development, Transportation, and Environmental Impacts’, Computers,
Environment and Urban Systems, Vol. 27 No. 2, March 2003, pages 181—203.

Schmidt, K. (1991): ‘Computer Support for Cooperative Work in Advanced Manufacturing’,
International Journal of Human Factors in Manufacturing, vol. 1, no. 4, October 1991, pp.
303-320.

13

Waddell, P., and Borning, A. (2004): ‘A Case Study in Digital Government: Developing and
Applying UrbanSim, a System for Simulating Urban Land Use, Transportation, and
Environmental Impacts’, Social Science Computer Review, vol. 22 no. 1, pp. 37-51.

14

Mobile Collaborative Software
Adaptation
Matthew Chalmers,
Malcolm Hall,
Marek Bell
Computing Science, University of Glasgow, UK
matthew@dcs.gla.ac.uk

Abstract. Adaptive systems are often constrained by the complexity of designing for
unexpected uses and preferences, integrating new software into existing systems, and
supporting users in understanding and controlling system structure. In our system,
Domino adaptation is driven by recommendations generated from logs of users’ activity.
More efficient and enjoyable functionality can be gained through contact with other users
who have been in a similar context. We demonstrate the use and utility of the approach
by presenting a prototype game in which players can adapt their system with
recommended upgrades in order to progress through the game with improved tools,
increased efficiency and enjoyment.

1 Introduction
System adaptation and evolution are especially important as the use of computers
expands beyond work activities focused on pre–planned tasks into ubiquitous
computing (ubicomp) for leisure and domestic life. Here, the variety and
dynamics of people’s activities, contexts and preferences make it especially hard
for the designer to foresee all possible functions, modules, their transitions,
combinations and uses. Instead of relying on the developer’s foresight,
incremental adaptation and ongoing evolution under the control of the user maybe
more appropriate (Edwards 2001, Rodden 2003). Our system architecture

15

,Domino’ actively supports incremental adaptation and ongoing evolution of
ubicomp systems. In effect, it changes a system’s structure on the basis of the
patterns of users’ activity. It supports each user in finding out about new software
modules through a context–specific collaborative filtering algorithm, and it
integrates and interconnects new modules by analysing data on past use. Domino
allows software modules to be automatically recommended, integrated and run,
with user control over adaptation maintained through acceptance of
recommendations rather than through manual search, choice and interconnection.

Each instance of the Domino system consists of three parts that manage and
record the use of modules, handling communication, recommendation and
adaptation respectively. A Domino module consists of a group of .NET classes
stored in a DLL (Dynamic Link Library). Domino is implemented entirely in C#
and compiled for the .NET compact framework. It relies on a database to store
history logs: MS SQL Server on desktop machines and SQLCE on PDAs. Figure1
gives an overview of Domino’s structure.

A Domino system continually broadcasts its existence over any connections
available on the local device—such as 802.11 wireless or wired Ethernet. Domino
systems also continually scan for available networks and devices, connecting to

802.11 infrastructure networks when available or creating their own ad hoc
networks. When two Domino systems meet they immediately start transferring
user history data. This data includes history data such as where the user went,what
web pages they browsed and which Domino modules he or she ran. History data
is passed on not only about the owner of the system but also about other people
that the owner has previously encountered. In effect this is a simple epidemic
algorithm (Demers 1987, Khelil 2002) offering a degree of consistency among
distributed databases of history information. Domino hides all logs from the user,
offering no direct interface to history data. Any receipt of history data triggers
Domino’s recommendation component, as new data offers new module
recommendations. The recommender is also triggered by new modules being
configured and run manually by the user. Recommendations are anonymous. The
recommender takes the user’s current set of modules, i.e. the user’s ‘context’ in
terms of modules, and compares it with the history data it has collected, and
recommends new modules often used by other users in similar contexts.
Essentially, this uses the same context–specific collaborative filtering algorithm
applied to URLs in (Chalmers 1998).

Once a module is installed, the system may automatically start it, ask the user
if he or she wants to run it, or add it to a list of recommended modules that can be
browsed at the user’s leisure. The programmer can select from these toolkit
options depending on the application and community of use. We assume that
normally a user would be offered the ability to prevent any particular system
adaptation by refusing a recommendation. Domino also supports removal of
modules, including stepping back through recent additions so as to let the user

16

rollback the system. Due to the generic nature of the system model, when a
module is received there is no predetermined place for it in the system. In the
simplest case,

Figure 1: Overview of Domino components

the new module can query the Domino system’s running modules to find ones

that satisfy its dependencies, by analysing their classes and the interfaces they
implement. This allows us to choose the most appropriate ‘parent’ for the new
module and we add it as a dependency. When multiple suitable modules are
found, we can obtain a ranked list of modules previously used in conjunction with
the new module, and check if one of them is currently connected to instances of
the modules in the ranked list, i.e. one having the most items in the ranked list as
dependencies.

In our current prototype system, modules and the protocols for their
transmission are sufficiently unusual for us to feel that we can carry out our initial
experiments without employing more heavyweight security measures than our
minimal ones of keeping logs hidden and using anonymous recommendations.
However, more general or widespread use would of course demand such
measures, we are investigating signed code modules and .NET Code Access
Permissions which allow the programmer to allow a range of permissions for a
module to be set which specify access level for other parts of memory, code,
hardware and file space.

2 Early Experience
To test the Domino architecture we developed a mobile strategy game, Castles.
Creating the game is part of an ongoing project using mobile games to explore the
deliberate exposure of system infrastructure to users in a ‘seamful’ way, as in
(Borrielo 2005) so that users might be aware of or even take advantage of
variation in the deployed configurations of system infrastructure. Similarly, we

17

are interested in selectively exposing and giving control of software structure to
users.

The majority of the Castles game is played in a solo building mode, in which
the player chooses which buildings and tools to use, and how many resources to
use for each one (Figure 2). Each type of building and tool is a Domino module.
The goal of this stage is for the player to create an infrastructure that efficiently
constructs and maintains the player’s army units. When the game starts, there are
over thirty types of building and eleven types of army units available to the
player, allowing for extremely varied combinations of buildings supporting
distinct types of army. Tools may have different effects based on which building
they are applied to. For example, the scythe tool has no effect if applied to the
Knight School but doubles output levels when applied to a wheat field. In order to
mimic the way that plug–ins and components for many software systems
continually appear over time, new buildings, tools and units are introduced
throughout the game, as upgrades and extensions that spread among players as
they interact with each other. When two players’ PDAs are within wireless range,
one may choose to attack another. Behind the scenes, Domino also initiates its
history–sharing and module–sharing processes. When a battle commences, both
players select from their army the troops to enter into battle. Players receive
updates as the battle proceeds, and at any time can choose to retreat or concede
defeat. At the same time, players can talk about the game, and the modules they
have recently collected, and modules they have used, and found useful or
discarded.

With such a high number of buildings, tools and units, there is significant
variation in the types of society—module configurations—that a player may
create. Selecting which buildings to construct next or where to apply tools can be
a confusing or daunting task. However, Domino helps by finding out about new
modules as they become available, recommending which modules to create next,
and loading and integrating new modules that the player accepts.

18

We have run pilot tests with students from our university department playing

the game in a building away from the university and its networks, and we can
offer some initial anecdotal evidence of the system’s use. Each player started with
the same base set of buildings, adapters and units available. Each was also
initially given game resources that were different to those given to others: two
extra buildings, two extra adapters and one extra unit. Thus, each player started
with a substantial core set of items (thirty-three buildings, ten building adapters
and eleven units) plus five items that were unique to him or her. For example,
amongst the additional items given to one player was the catapult factory that
constructs catapult units. As anticipated, when players met for battle, their

19

Domino systems exchanged usage information and transferred modules between
PDAs so as to be able to satisfy recommendations. Several players who had been
performing poorly because of, for instance, a combination of buildings that was
not efficient for constructing large armies, felt more confident and seemed to
improve their strategies after encountering other players. They started
constructing more useful buildings by following the recommendations, with the
system showing how or where modules can be used based not only on general or
objective fit, but with specific patterns of use in play.

Overall, this early experience has been promising and productive—but
preliminary. We are now planning a larger trial involving participants recruited
from the public. The basic system structure will stay the same, but we are making
minor changes to the interface. In future, we hope to report on the details of these
trials, both in qualitative terms, e.g. how people understood and interacted around
the dynamic process of recommendations and system changes as they move
through the city, and in quantitative terms, e.g. the rates and statistics of module
transmission, sharing and spatial movement in the course of the trial.

3 References
Borriello, G. et al. Deploying Real–World Location Systems, CACM 48(3), March 2005, 36–

41Chalmers, M. et al. The order of things: activity-centred information access. Proc. WWW
1998.359-367.

Demers A. et al, Epidemic algorithms for replicated database maintenance, Proc. 6th
ACMSymposium on Principles of Distributed Computing (PODC), 1987, 1-12

Edwards, W.K., Grinter, R. At Home with Ubiquitous Computing: Seven Challenges.
Proc.Ubicomp 2001, Springer LNCS, 256–272

Khelil, A, et al. An Epidemic Model for Information Diffusion in MANETs, Proc. ACM MSWIiM,
Rodden, T., Benford, S. The evolution of buildings and implications for the design of

ubiquitousdomestic environments. Proc. ACM CHI 2003, 9–16.

20

Socio-Technical Self-Descriptions as a
Means for Appropriation
Gabriele Kunau,
Thomas Herrmann,
Kai-Uwe Loser
Information and Technology Management,
Institute for Applied Workscience, Ruhr-University Bochum
{thomas.herrmann, gabriele.kunau, kai-uwe.loser}@rub.de

1 Introduction
Processes of appropriation of groupware systems in organizations are social
processes that are strongly intertwined with processes of reflection and
communication. We suggest facilitating these processes by supporting the
creation of socio-technical self-descriptions. Self-description is an important
element of social systems such as organizations and can be extended to include
descriptions of an organization’s usage and adaptation of technology. In the
following we discuss the concept of self-description; how support for self-
description can effect appropriation of groupware systems; how the analysis of
self-descriptions could be a measure for the degree of appropriation that has
already taken place in an organization; methods for supporting self-description in
the context of groupware; empirical experience with facilitating self-descriptions
in projects.

21

2 Self-Descriptions
Self-Description in System Theory
The relevance of self-descriptions for the understanding of the development of
organizations is elaborated in system theory. In contrast to other types of systems
such as e.g. biological systems, social systems do not possess anything physical –
like a membrane – that constitutes their boundary to the environment. Social
systems must maintain their boundaries in a continuous process of negotiation
deciding which communicative acts are acceptable within the system and which
are not. As an orientation for this process of distinguishing between outside and
inside, social systems create and use self-descriptions that allow them to make a
difference between the system itself and its environment (cf. Luhmann, 1995, p.
196).

Self-descriptions occur in many forms, a few examples are given to illustrate
the concept.

Examples for Self-Descriptions in Organizations
An organization chart that describes, who belongs to which department, is a
self-description: it bears implications about hierarchical structures and
information-flows. An organization’s mission statement is a self-description,
because it includes values that (should) guide the behavior within the
organization. An ISO-9000 process description can be a self-description,
because it describes expectations how certain tasks need to be carried out. All of
these documents contain expectations that direct the individuals’ behavior within
the organization.

But self-descriptions do not only exist in written form as sustainable
documentation. Self-description can also occur in more volatile modes such as
oral communication or e-mail communication. A tradition like “we go for lunch
each day at 12:30” can be part of a team’s self-description; such traditions are
usually not contained in official documents, they are rather passed on orally or in
ephemeral electronic communication like chat.
If the organization uses a groupware system, then another, special, form of self-
description is added: those self-descriptions that are inscribed in the groupware.
Take workflow systems as an example: models of the organization’s processes
are encoded into a workflow system which then controls the coordination between
its users. Also aggregated awareness data can be considered as a kind of self-
description.

An organization’s self-description is never one large canonical document,
different forms of self-description add to the overall picture. The next section uses
these examples to derive a more abstract description of the concept self-
description.

22

3 Three levels of self-descriptions

Self-description within a social system takes two forms of appearance: as a
process and as an artifact. As a process, self-description is made up by the
continuous communications within the organization that keep alive its essential
characteristics, norms and values. In this way, the process of self-description
maintains the organization’s identity as a unique social system that is
distinguishable from other social systems.

Since communicative acts are ephemeral, organizations create artifacts that
make important parts of the communications more permanently available. These
artifacts are usually combinations of texts, graphics and other symbolic means.

In the context of socio-technical systems (e.g. organizations having
appropriated a groupware) three levels of self-descriptions can be distinguished:

Technically
inscribed

regulations

Commitments
in form of
volatile

communications

Regulations
based on

documentation

In
du

ce
 /

Req
uir

e
Fo

rm
ali

ze
Induce /

Require

Formalize

Induce /
Require

There are the volatile agreements that exist only as oral communicative acts;

then there are documented regulations and then there are those rules that have
become part of the groupware systems. The latter occur in various forms, for
instance:
- the way how menus are organized
- the contents and structures of electronic forms
- the hierarchical structure of folders
- the sequence of actions in workflow management systems …
All these characteristics of the groupware system do not merely fulfill a functional
purpose, but they also describe characteristics of the social system and its way of
using and adapting – and eventually appropriate - the technical system.

But no matter how deliberate the design process was, no technical system can
unambiguously prescribe its usage. Therefore the organization will agree to

23

additional rules concerning the usage of the groupware system in the course of
appropriation. As a result socio-technical self-descriptions occur in three forms as
shown in the figure above.

The arrows between the three forms of self-descriptions indicate that there is
an interchange between them. A self-description that first exists only informally
e.g. in form of an oral agreement may be formalized and become part of an
official document. Similar, the statements in a document may be implemented as
features of a groupware. The other way around, a formal agreement always needs
informal agreements into which it is embedded. The arrows leading from
“technically inscribed regulations” to “regulations based on documentation” and
“commitments in form of volatile communications” indicate this necessity.

4 Self-Descriptions and Organizational Change
What is the relationship between self-descriptions and appropriation of
groupware? Processes of appropriation are processes of organizational change;
and self-descriptions can be used to support processes of organizational change.

Self-Description as a Means of Systemic Intervention

Methods of systemic intervention are methods based on concepts and insights of
system theory that support processes of organizational change. The most
important characteristic of systemic intervention is that it attempts to consolidate
two seemingly contradictory aspects: intervention that strives to induce change
processes towards a specific goal on the one hand, and the respect for the self-
organizing characteristics of social systems on the other.
Self-descriptions are an important aspect of systemic interventions:

a) Self-descriptions are necessary because they provide stability for the
system by defining its boundaries and making basic regulations
comprehensible

b) Questioning the self-description can initiate processes of self-reflection
and subsequent change that lead to a new self-description.

Deployment of Groupware in an Organization

The deployment of a new groupware system effects a change within the
organization that needs to be reflected in the organization’s self-description. The
organization needs to describe how the new technical system is integrated into its
network of communications. The process of including a new groupware system
into the organization’s self-description is part of the process of appropriation.

We find the concept of self-descriptions fruitful for understanding and
supporting appropriation processes of groupware systems because it combines
two quite different aspects:

24

a) Planned rather than completely arbitrary appropriation of a groupware
system within an organization is necessary in order to achieve the goals
for which the system was designed.

b) Appropriation is a social process that is promoted in ways which are not
comparable to the engineering processes for groupware systems.

5 Self-descriptions as Support for Appropriation
Our approach to supporting processes of appropriation is to support an
organization in creating and maintaining socio-technical self-descriptions. The
organization should
- explicate its usage of the groupware,
- discuss alternative options,
- reach conclusions about the usage,
- document the conclusions.

Functions of groupware systems can be used to support communication
processes which promote the process of appropriation. This field has been
explored extensively by the work of Volkmar Pipek (2005).

Our work tries to bind together three types of methods and instruments which
aim at the successful adoption of technology and the evolution of its usage:
(1) A modeling method that provides symbolic means which are specifically
suitable for the creation of written forms of socio-technical self-descriptions:
SeeMe, the diagramming-technique for modelling semi-structured socio-technical
systems supports modelling of (technical inscribed) formal processes but also
provides special modelling concepts for the representation of vagueness,
incompleteness, and contradictions that are inherent to rules and agreements in
organisations (Herrmann et al. 2000).
(2) An editor with which socio-technical models can be elaborated as well as
presented in co-located workshop settings: Self-description, from one point of
view, is a communication process where practice is reflected. Using complex
diagrams for this purpose needs help to reduce complexity and focus certain
aspects. The SeeMe-Editor is specifically designed to support step by step
presentation of models as well as modifying diagrams in between the
presentation, to visualize the results of the ongoing discussions developing the
self-description.
(3) The socio-technical walkthrough (STWT) as a method for systematically
facilitating communications in a series of workshops (Herrmann et al 2004):
The core idea of the STWT is that the concept or outline of a socio-technical
system is represented by a diagrammatic model which is the outcome of a
participatory design process. This model is either developed from scratch or is
derived from an existing model – which usually presents the given state of the
work processes – by gradually modifying its elements with respect to the

25

technology to be introduced. A model has to be inspected step by step before it is
considered as the final solution, upon which most of the participants can agree.

6 Self-Descriptions as a Measure for
Appropriation

So far socio-technical self-descriptions have been introduced as a means for
supporting processes of appropriation. However, we also think that they could be
used as a measure to judge whether and how deeply an organization has
appropriated a groupware. The overlapping between the different forms of self-
description can be taken as a measure for the process of appropriation: the more
the symbolic structures of an IT-solution cover the self-description of a social
system and its ways of interacting with the computers, the more has the process of
appropriation evolved. And the more the self-descriptions refer to the groupware
system and how it should be used, the more is this system incorporated into the
organization

7 Empirical Work
During the past years we conducted numerous case studies in which the triad of
modelling notation, editor and workshop-concept was employed, analyzed and
improved. Among these case studies were:

! (1) KatEr – Planning new work procedures in a university library in
the light of a new groupware system (Loser, 2002)

! (2) Modeling to define the structure and content of a knowledge
management system for a consumer counseling agency (Herrmann et al,
2002)

! (3) SpiW – Socio-technical design of a mobile application for logistic
companies (Herrmann et al, 2004)

! (4) Process Maps to improve collaborative learning (Carell et al, 2005)
For this E-CSCW workshop we provide empirical material from our latest case
study named “ELISE”. The University of Dortmund replaced its procedure of
circulating paper copies of the contents of scientific periodicals (cf. photo) by a
system that sends out e-mails to inform
the scientific staff about new issues and
their content.

Within our work group we decided to
design and implement an electronic
literature system that ingests the e-mails
and provides cooperative functions to
support the easy communication and

26

coordination that was previously realized by notes on the circulating paper copies.
The figure on the last page illustrates how aspects of socio-technical self-

descriptions are realized for ELISE.
- The structure of the menu buttons reflects the collaboration and the way in

which the group works with journals; e.g. there are buttons to recommend
certain articles to others.

- There are additional process diagrams that contain commitments about the
way the group uses the system; e.g. the scientific staff will try to view new
journals by Thursday of the following week; the students in the library will
send out reminders every Thursday.

- As an example for communication beside the main regulations, an e-mail is
attached in which one colleague asks to postpone the deadline. The e-mail
demonstrates that the commitments (here, to skim through the journals until
Thursday) are taken seriously but that it is also possible to agree to
spontaneous changes.

8 Further Research
We argued for socio-technical self-descriptions as a concept to support processes
of appropriation and as a basis for measuring how complete a process of
appropriation of a groupware is. We also gave an empirical example of the
concepts’ relevance, also referring to the experience of various earlier projects.
The focus on socio-technical self-description suggests some interesting future
research questions:
! When and where in the Software-Lifcycle can the preparation of the

appropriation start by supporting socio-technical self-description (with respect
to technical structures, the growing documentation, participatory design etc.).

! How far can software design and appropriation be overlapped and how far can
socio-technical documentation serve as a boundary object to manage this
overlapping?

! By which extent can the process of appropriation be actively promoted from
outside or inside by referring to socio-technical self-descriptions.

! Can a “more or less” of appropriation be measured by analyzing the
occurrence of socio-technical self-description?

9 References
Carell, Angela; Herrmann, Thomas; Kienle, Andrea; Menold, Natalja (2005): Improving the

Coordination of Collaborative Learning with Process Models. Proceedings of CSCL 2005.
The Next 10 Years. May 30 - June 4, 2005. Taipee.

27

Herrmann, Thomas; Hoffmann, Marcel; Loser, Kai-Uwe; Moysich, Klaus (2000): Semistructured
models are surprisingly useful for user-centered design. In: Dieng, R.; Giboin, A., Karsenty,
L., De Michelis, G. (Eds.)(2000): Designing cooperative systems. Proc. of COOP2000.
Amsterdam: IOS press. pp. 159 – 174.

Herrmann, Thomas; Hoffmann, Marcel; Kunau, Gabriele; Loser, Kai-Uwe (2002): Modelling
Cooperative Work: Chances and Risks of Structuring. In: M. Blay-Fornarino et al. (Eds.):
Cooperative Systems Design, A Challenge of the Mobility Age (Coop 2002). IOS Press. S.
53-70.

Herrmann, Thomas; Kunau, Gabriele; Loser, Kai-Uwe; Menold, Natalja (2004): Sociotechnical
Walkthrough: Designing Technology along Work Processes. In: Andrew Clement, Fiorella
Cindio, Anne-Marie Oostveen, Doug Schuler, Peter van den Besselaar (Hrsg.), Artful
Integration: Interweaving Media, Materials and Practices. Proceedings of the eighth
Participatory Design Conference 2004. ACM, New York. S. 132-141.

Loser, Kai-Uwe; Herrmann, Thomas (2002): Enabling factors for participatory design of socio-
technical systems with diagrams. In: Binder, T.;Gregory, J.; Wagner, I. (Eds.): PDC 02 -
Proceedings of the Participatory Design Conference. Malmö, Sweden, 23-25 June 2002.
CPSR, Palo Alto, CA. S. 114-143.

Luhmann, Niklas (1995): Social Systems (Translated by Bednarz Jr., John with Baecker, Dirk).
Stanford, California: Stanford University Press..

Volkmar Pipek (2005): From tailoring to appropriation support: Negotiating groupware usage.
University of Oulu.

28

Te
ch

ni
ca

lly
in

sc
rib

ed
re

gu
la

tio
ns

C
om

m
itm

en
ts

in
fo

rm
of

vo
la

til
e

co
m

m
un

ic
at

io
ns

R
eg

ul
at

io
ns

ba
se

d
on

do
cu

m
en

ta
tio

n

Induce/
Require Formaliz

e
Induce /

Require

Fo
rm

al
iz

e

In
du

ce
/

Re
qu

ire

Vo
n:

 K
ai

-U
w

e
Lo

se
r

G
es

en
de

t:
Sa

m
st

ag
, 7

. M
ai

 2
00

5
13

:5
8

An
: A

le
xa

nd
ra

 F
re

ric
hs

; A
ng

el
a

C
ar

el
l

C
c:

 C
ar

st
en

 R
itt

er
sk

am
p;

 G
ab

rie
le

 K
un

au
; I

sa

Ja
hn

ke
; M

ic
ha

el
 P

ril
la

; R
ai

ne
r S

kr
ot

zk
i;

Th
om

as

H
er

rm
an

n
Be

tre
ff:

 A
W

: E
lis

e-
Ta

g

Bi
tte

 u
m

 V
er

lä
ng

er
un

g.
..

Ic
h

ha
be

 m
ir

bi
sh

er
 n

oc
h

ke
in

e
IV

 a
ng

es
ch

au
t.

G
in

ge
 d

as
, d

as
s

ih
r w

eg
en

 d
es

 F
ei

er
ta

gs
 ;-

) d
ie

IV

 e
rs

t
am

 D
ie

ns
ta

g
ab

en
d

au
f W

or
ki

ng
 s

et
zt

?

Lu
s

29

Supporting Appropriation Work with
Social Translucence, Collective
Sensemaking, and Social Scaffolding
Wendy A. Kellogg,
Thomas Erickson
IBM T.J. Watson Research Center
Yorktown Heights, NY USA
wkellogg@us.ibm.com, snowfall@us.ibm.com

Abstract. How do users come to understand the capabilities of online environments in
order to adapt them to their own purposes? We have argued elsewhere that creating
socially translucent systems – those that support mutual awareness and accountability by
providing perceptual cues about participants’ presence and activities – is a key enabler
for the emergence of social behavior and norms. In this paper we analyze three cases in
which 1) users engage in collective sensemaking to understand an unfamiliar interface
feature (the Babble social proxy), 2) the Babble designers and leader of a community of
interest collaborate to provide social scaffolding to help establish healthy norms and
practices in an online environment, which in turn allows new practices to emerge; and 3)
designers of a broadcast messaging tool make a small interface change that enhances
the ability of a population of users to self-regulate and thereby successfully appropriate a
new technology. We argue that designing systems to be socially translucent facilitates
social interactions like sensemaking and scaffolding that are critical to appropriation work.

1 Introduction
For the past several years, the Social Computing Group at IBM’s T.J. Watson
Research Center has been designing socially translucent online environments by
making cues about presence and activity visible to users. We believe that such
systems — by supporting mutual awareness and accountability1 — will make it
easier for people to carry on coherent discussions; to observe and imitate others’
actions; to engage in peer pressure; to create, notice, and conform to social
conventions; and to engage in other forms of collective interaction, including
sensemaking and scaffolding. We use the phrase “social translucence” as a rubric

1 Eriksen (2002) provides an interesting discussion of three views of accountability (following Garfinkel’s

“everyday” accountability, Suchman’s “located accountability,” and Dourish’s “system
accountability”). Accountability with respect to socially translucent systems is closest to Garfinkel’s
concept in the sense that making presence and activity visible in the course of everyday (online)
activities both enables and demands accountability to others for one’s actions.

30

mailto:wkellogg@us.ibm.com
mailto:snowfall@us.ibm.com

for our approach to designing such systems. “Social,” of course, signals our
interest in providing cues that are socially salient. “Translucence” has a more
nuanced role: Most evidently, in an implicit contrast to “transparence,” it
indicates that our aim is not to make all socially salient information visible.
Translucence stands in for the notion that, in the physical world, cues are
differentially propagated through space — something which, as social creatures,
we understand and make use of in governing our interactions. Thus, we know that
those across the room may see that we are talking, but will be unable to hear what
we say; and we adjust our interactions to take advantage of this. If we might call
this the ‘social characteristics of (physical) space;’ it suggests a design goal of
creating similar regularities in the propagation of social cues in online
environments (Erickson et al., 2002).

Sensemaking and scaffolding are central activities in which collectivities of
people — teams, groups, communities of interest, or societies — engage.
Individuals engage in sensemaking to regulate their behavior in the context of
groups in which they participate. Groups regulate their behavior in part by
establishing interactive norms and conventions. In this paper, we argue that for
users to appropriate technology they must both understand its capabilities and
have scaffolding mechanisms for collectively discovering, structuring, iterating,
and promulgating practices that enable the technology to become what Ackerman
et al. have termed a ‘resource’ (Ackerman et al., in preparation). To examine these
propositions more concretely, we look at sensemaking and scaffolding in three
examples of socially translucent technologies designed to aid people interacting
online.

2 Group Sensemaking in Babble: The Social
Proxy

Babble was designed to serve the communication needs of small to medium-sized
corporate groups. It was intended to provide a semi-private online conversation
area where members of groups such as teams, work groups, committees, and
special purpose task forces could have text-based synchronous or asynchronous
conversations. Figure 1 shows a screenshot of the Babble user interface. In the
upper middle pane of the window is a visualization called the social proxy. Its
purpose is to provide cues about the presence and activity of those in the current
conversation. People in the conversation are shown within the circle; people
logged on but in other ‘rooms’ (the list to the right) are positioned outside the
circle; and, most importantly, when people are “active” in the conversation,
meaning that they either ‘talk’ (type) or ‘listen’ (click and scroll), their dots move
to the inner periphery of the circle, and then gradually drift back out to the edge
over the course of about 20 minutes.

31

Figure 1. The Babble user interface (cf. Erickson et al., 1999).

Over the course of the last seven years, we have deployed Babbles to a few
dozen groups, and conducted a variety of studies of its adoption and use.1 The
social proxy is an unfamiliar element to new users of Babble, but readily attracts
attention as people try to figure out what it is and how it works. Often there is one
or more experienced Babbler around to answer questions. But in the excerpt
shown in Figure 2, all of the users were new to Babble and none knew what the
social proxy was for; this evoked the following example of group sensemaking.

Jessica@San Jose Monday 23Jul01 1:13:45 PM EST

what do the circles with different numbers of dots in them mean? (e.g., next to some peoples'
names in the personal places?)

dan@chicago Monday 23Jul01 1:13:49 PM EST

i like the round table

Randy@boston Monday 23Jul01 1:14:06 PM EST

We look like dancing M&Ms

dan@chicago Monday 23Jul01 1:14:22 PM EST

if it can show people's icon or picture, ...

Chen@China Monday 23Jul01 1:15:14 PM EST

Are the people outside of the gray circle not in the chat room? For e.g. Ram are u not in the chat
room?

1 For a list of recent publications, see www.research.ibm.com/SocialComputing/SCGpapers.htm.

32

Lori@Italy Monday 23Jul01 1:15:33 PM EST

!

Ram@Mountain View Monday 23Jul01 1:15:35 PM EST

Hello, World!

BillY@Atlanta Monday 23Jul01 1:15:46 PM EST

Chen, it looks like they are in a different Babble area

Becki Raven@Armonk Monday 23Jul01 1:15:59 PM EST

The circles move when an individual moves...

Chen@China Monday 23Jul01 1:17:03 PM EST

Becki, you just moved out of the gray circle...what does it mean? Hv you gone to a differnt
Babble area?

Mitchell@Toronto Monday 23Jul01 1:17:56 PM EST

When you enter a room/area, your marble will move to the center and you can tell who else is in
the area.

William@Mountain View Monday 23Jul01 1:18:12 PM EST

Interesting, is there any significance to the differences in proximity to the center for some dots
vs. others? Why are some closer to the middle and some more towards middle/outer radius?

Mitchell@Toronto Monday 23Jul01 1:18:29 PM EST

Hmmm... need more testing to find out!

Susanne@Germany Monday 23Jul01 1:18:46 PM EST

Hi

BillY@Atlanta Monday 23Jul01 1:18:53 PM EST

William, it looks like an activity statement... the longer your idle the further from the center you
are.

Caitlin@SanFrancisco Monday 23Jul01 1:19:10 PM EST

perhaps the people who came in recently are further away from the core of the commons area?

William@Mountain View Monday 23Jul01 1:19:20 PM EST

Thanks for the info Bill, I'm going to see if I move in closer as a result of typing this message...

Rhonda@UK Monday 23Jul01 1:19:53 PM EST

33

as soon as u send a message u get closer to the center

Figure 2. An excerpt from a Babble as new, untrained users engage in sensemaking to figure out
the Babble social proxy or “cookie.” (Note: Names have been changed).

This excerpt is interesting in a number of ways. First, it is remarkable for how
distributed and rapid the sensemaking is: 13 people from all over the world make
18 utterances over the course of 6 minutes. The people have never met and have
never been in a Babble space. Yet they rapidly converge on the correct
interpretation of the social proxy. The persistence of the chat facilitates
participants building on each other’s questions and observations. The excerpt also
underscores the importance of common ground in allowing sensemaking to take
place; everyone sees the same changes in the environment as they and others take
action, and they see themselves as others see them — i.e., from a “third person”
point of view. When everyone sees the same thing, it creates a coherent basis for
conversation. When users get feedback on their own actions by seeing themselves
as others will see them, they can more readily understand the relationship between
their actions and changes in the visualization, and therefore the meaning of
changes in the visualization for other people.

Erickson (2003) outlined six claims for designing visualizations of social
activity, based partially on the design and experience of Babble, as follows:

(1) Everyone sees the same thing; no customization.
(2) Portray actions, not interpretations.
(3) Social visualizations should allow deception.
(4) Support micro/macro readings.
(5) Ambiguity is useful: suggest rather than inform.
(6) Use a third-person point of view.

While not all of these claims may be vital to facilitating sensemaking, some of
them clearly are, including 1 and 6, as discussed above, and perhaps others. In the
next example, we draw on the experiences of a long-running Babble community
to look at how seeding the environment with suggested actions created a fertile
ground for the emergence of new norms and practices among the users.

3 Appropriation Work in Babble: Seeding and
Evolving Work Practices through “Social
Scaffolding”

Netweavers is a community of interest at IBM consisting of globally distributed
participants with an interest in communities, both “real-world” and online. The
community has been active for several years as of this writing, and has a
dedicated leader. In November, 2000, the leader approached the Social

34

Computing Group with a request to start a Babble as one of the ways Netweavers
members could interact. The Babble has been active on and off ever since.

By the time the Netweavers Babble was started, we had already deployed and
observed other Babbles and had developed a set of recommendations to help
groups get started. We called these the “Six Habits of Effective Babblers,” (see
Figure 3) and gave them to the leaders of new Babbles (or posted them ourselves
in the case of some Babbles in which we were also participants) along with some
guidelines for how to get a successful installation off the ground. In the case of
Netweavers, the leader was highly motivated and organized, and in addition our
posting the “Six Habits,” he posted three other topics: “Things To Do Right
Away,” (Figure 4) “Etiquette and Norms,” (Figure 5) and “How to Make a
Personal Place” (not shown). In addition, one of the developer/participants created
a post called “Creating a Digital Culture,” that shared some of the patterns that
other Babble groups had discovered (Figure 6).

The “Six Habits of Effective Babblers” Post

1. TALK! Especially at the beginning, people aren't sure what to say. Be brave! Remember
that something doesn't have to be of interest to the entire group to be posted in Babble. After
a while you will find that there is benefit in listening in on other group member's
conversation, even when they don't concern you directly.

2. BE RESPONSIVE. If someone writes something you like, say so. In Babble it's perfectly
OK to write "I agree" or "Thanks" and nothing else.

3. BE SOCIABLE. Although Babble is intended as an environment for work groups, don't
hesitate to be sociable. Say "good morning." Chat about the weather, or the headlines. Our
experience is that talk breeds talk, and what begins as small talk often turns into work talk.

4. CREATE NEW TOPICS. Don't hesitate to create new topics.

5. BE EXPLICIT. If you'd like people to respond in a particular way, make that explicit: end
with a question, or a request.

6. RESPECT THE GROUP'S PRIVACY. Treat Babble as a trusted space, where the group
can talk freely and frankly with one another without fear of 'outsiders' overhearing. Thus, do
not quote conversations that occur in Babble, either by pasting segments into email, or by
verbally passing them on.

Figure 3. The Six Habits of Effective Babblers. Posted by one of the developer/participants in a
new Babble community.

35

The “Things To Do Right Away” Post

1. Change your marble color
step 1 - options menu
step 2 - select marble color

2. Go to the Commons Area and say hello
Step 1 - Click on Commons Area
Step 2 - click on the area where you can read the text
Step 3 - Start typing
Step 4 - <shift+enter> to send your message

3. Comment on something that has already been written.
Step 1 - highlight text on which you would like to comment
Step 2 - start typing
Step 3 - <shift+enter> to send the message

2. Create your Personal Place
Step 1- click on Personal Places
Step 2 -Topic menu/ New Topic
Step 3 - enter your name
Step 4 - Please tell us a bit about yourself.

Figure 4. Things To Do Right Away. Posted by the community leader, this message asked
members who visited Babble for the first time to take some initial steps to become acquainted with

the environment.

The “Etiquette and Norms” Post
! 1. When you arrive, please say hello & check in with the group. This just makes the
place nicer for everyone else. This doesn't mean you have to stay and chat. But it's just nice
to be real with the people around you. :-)
! 2. Please make sure that you read "Thing to do right away."
! 3. Please make sure that you have a name that everyone else knows or can link back to
you. It's not okay to be anonymous here. Please...
! 4. Just jump into the conversation. Feel free. What are you working on? What is
capturing your attention today? What would you like to see in the future? What's new? If
someone could help you, how could they? What's the weather like outside? Are you going
to be around today?
! 5. Again, please make a point of at least saying one or two things each time you visit.
This could be as simple as "hello" or something about the weather.
! 6. Preferably, comment on something substantial that was mentioned earlier. Of course
if nothing substantial was mentioned earlier, your comment could always be the first. ;-)
! 7. Please do not send the Babble application to people. Please do not tell people the port
number for the Netweavers Babble.
! 8. Anyone who does work related to community is invited to join Netweavers. People get
this information when they join.
! 9. Otherwise, if you enable someone to join Netweavers without them actually going
through the registration process, this creates a lot of work tracking the person down and
getting them registered. Having a process in place through which people join Netweavers
and tell others about themselves is critical to keep some important characteristics of our
social capital in place.

Figure 5. Etiquette and Norms. Created and posted by the community leader soon after the
Babble had been deployed, except for items 7-9, which were added almost 9 months later.

36

The “Developing a Digital Culture” Post

As you use Babble over a longer period of time, you'll find that your group develops a set of
customary ways of using Babble. Each group is different, but you may find it useful to try out
some of the patterns that work for others.

THE COMMONS
This is the only usage pattern that is built into Babble. The Commons is intended to be a
place where people hang out, and where a lot of casual talk occurs. To keep the amount of
text in the Commons manageable, it is archived on a weekly basis.

GURU'S CORNER
In some Babble installations a topic of this ilk is inhabited by one or more members of the
Babble design team, as a way of offering intelligent (hopefully!) online help.

OFFICES
Babble participants often create topics which serve as their online offices. People set the rules
for their own offices, but typically an office is a place where others may leave messages (if
the office owner is not online), and where an office owner may post drafts of work for
comments, rough notes, their schedule, or do just about anything they wish!

BAD JOKES
Everyone seems to get a small trickle of jokes over the internet, and this is where they end up
in our Babble.

ANNOUNCEMENTS, etc.
One or more topics devoted to upcoming events, announcements, interesting URLs, or other
reference information can be quite useful. The Babble timeline window allows you to see
whether people are actually making use of this information...

PROJECT X
Naturally, there are many topics which are oriented around a project...

Figure 6. Patterns of use in Babble, shared by one of the developer/participants in the Netweavers
Babble.

The posts above were all created within couple of months of the Netweavers
Babble deployment. What is striking, perhaps, is the amount of effort that the
community leader and one of the Babble developer/participants exerted to seed an
active, viable community. Our experience as the developers of Babble was that
this kind of guidance, as well as leadership and commitment by a core group of
users, was essential to establishing a successful Babble deployment. Another
thing to note is the social nature of the scaffolding – in one case, the community
leader making an explicit request of members new to Babble, and in the other, an
experienced Babble user vouching for successful practices and encouraging others
to explore and adapt them. The fact that these bits of encouragement or instruction
surface in a conversational way reinforces that they are social requests, to be
honored voluntarily.

The difficulty of establishing norms in online environments has been well
noted in the literature. Danis & Lee (2005) provide a review in the course of
reporting on their observations of the emergence of norms in an online chat
environment used by summer interns. Notable points include that creating norms
is difficult (Mark, 2002); that groups typically will only do the work of

37

developing norms with respect to things that really matter to them (Feldman,
1984), and that conflicting views of what appropriate behavior is can impair the
social functioning of the group and its ability to establish norms. Jasperson et al.
(1999) propose three ‘social appropriation moves’ (conformance, imitation, and
mutual discovery) to account for social influence on individual decisions about IT
use. In a similar vein, Mark (2002) attributes the failure of a distributed work
group she studied to develop norms to several social factors mediated by
awareness, such as being able to observe others’ behavior, ability to monitor
adherence to norms, and ability to apply peer pressure. We note that these are the
kinds of awareness and accountability that socially translucent systems are meant
to provide and support, respectively.

In the case of Netweavers, whether due to its skilled and organized leadership,
to experienced participants leading the way, to a happy accident of a lively set of
users, or some of all of the above, the social scaffolding was effective. This group,
over time, evolved new Babble practices (albeit often with the participation of the
community leader or an experienced participant), including an interview genre, a
“best of Babble” topic that collected significant posts in one place, a question
board for asking questions of the whole community, and a regularly-scheduled
online chat for a leadership affinity group. Figure 7 shows some of the Babble
dialogue that discussed the interview genre in a topic called “About Interviews.”
The discussion here shows that the interview concept is not yet well understood
by the group, and normative practices (such as where the text will reside after the
“live” interview is over) have not yet stabilized. Figure 8 shows the genesis of an
idea for a question board initiated by one of the core participants (emphasis
added).

38

The “About Interviews” Posts
Mark the Community Leader Monday 27Nov00 4:04:16 PM EST
Interviews are an experiment in ways that we can get to know one another.

Todd Friday 22Dec00 10:40:10 AM EST
As far as that goes, a couple of thoughts...FWIW.

I just read your interview (I think it's the only one done so far) with Tom, and I now
understand what this process is meant to do. I signed up without really considering what it
was I was signing up for - guess I thought it would have more to do with interviewing Babble
users to get a sense of what they found useful/interesting, and unuseful/uninteresting about
Babble - more researchy type of interview. (I believe this type of interview would still be
worth conducting across our membership, from a research perspective).

In any case, as I read the interview with Tom I was reminded of my days as a
reporter/journalist for the school newspapers (I did this in high school and college and loved
it). As I thought about what those interview stories required to get them published, it
occurred to me that you may need to have Babble "reporters" identified who do this sort of
work as more of a routine assignment, rather than on a hit and miss basis. Don't know
whether I'm making sense or not, but that's just a thought.

Mark the Community Leader Tuesday 26Dec00 9:00:19 AM EST
Excellent idea, Todd. It would be great if we reached a point where there was someone who
was willing to take the lead around doing these interviews on a more regular and long-term
basis. (I'd do it myself if I wasn't already doing so many other things here).

So, you understand that this has nothing to do with being a Babble user? It's mostly about
learning more about each other. This is about the people inside of the company who do
community-related work.

The idea started when Tom and I had a discussion here (see archives) about where we can
start to address some of the issues. He felt that we don't yet know each other enough and that
it would help to have some activity where we could introduce ourselves a bit more.

Mark the Community Leader Tuesday 14Aug01 7:03:58 AM EST
I wonder about interviews... here we are, finishing up Carlos’ interview and we can still
develop the questions as if we are the interviewers... I wonder about the possibility of the
interview being integrated into a person's personal place? Would it make sense to relocate
an interview there and continue the dialog with the interviewees?

Mark the Community Leader Tuesday 14Aug01 7:04:12 AM EST
I'm noting the similarity between interviews and personal places.

Carlos Tuesday 14Aug01 8:26:59 AM EST
Responding to: <<the similarity between interviews and personal places>>

And I agree with it, actually, more than anything else because it is OUR OWN interview and
as such it should be in OUR OWN place... By the way, when is the next interview taking
place?

Figure 7. A community clarifying what is and what is not an interview in a collective experiment
to get to know each other better by conducting “live” interviews (online) in front of a “live”

(online) audience.

39

The Genesis of the “Question Board” Idea
Lloyd @ London Thursday 1Feb01 6:22:03 AM EST
Hey people - had an idea. Could we use this place to ask questions to anyone in the
community..

Here's one to start:
We have a customer coming who requires consultation advice about how to set up knowledge
communities in their organisation. Would any of you be prepared to fly over here to meet this
customer? (obviously we'll cover costs + provide more info if you are interested) ???

Mark the Community Leader Thursday 1Feb01 9:53:31 AM EST
Great idea, Lloyd. I was wondering if there might be a place where we could start engaging
in some of the work around "building" community. Thinking that a construction zone, or
something like that would be a good metaphor. There, we could share methods, info re: tools
access, strategy, etc.

Scott Thursday 1Feb01 10:16:27 AM EST
Hi Lloyd - yes, it will be interesting to see what shows up here.

Figure 8. A core participant suggests the need for a new topic, and demonstrates what he has in
mind with a particular request of the community. The community leader reinforces and extends

the idea, and another participant seconds the idea.

4 Large-Scale Sensemaking: IBM Community
Tools’ Pollcast

The last example is taken from a suite of “broadcast messaging” applications that
run within IBM, called IBM Community Tools (ICT). ICT has about 50,000
subscribers globally across the company, from many different organizations and
parts of the business. One application, called “Pollcast,” allows subscribers to
compose a multiple-choice question and send it out to one of the communities
defined within ICT. The poll is received by any members of the target community
who are online, and within a minute or two, responses come back and are
displayed in the sender’s pollcast window. An example of this is shown in Figure
9.

Two types of sensemaking with respect to Pollcast are interesting from the
perspective of the ability of large communities of people to self-regulate. In the
initial deployment of Pollcast, a particular pattern of abuse emerged. For example,
someone might send out a poll asking “Which do you like best: Pepsi or Coke?”
A minute later, someone else would follow this with a poll asking “Do you think

40

Figure 9. A poll sent to the “everyone” community.

it’s appropriate to use Pollcast to ask about soft drink preferences?” and so on,
leading to a kind of trivia flame fest that in practice could ruin the broadcast
capability for everyone. The developers responded to this pattern by disrupting it:
they made it mandatory for “This poll is inappropriate” to be added as a response
to every poll that was generated (see the last response option in Figure 9).

This was a relatively small interface change, but it had the intended effect of
reducing the number of inappropriate polls. It is interesting to speculate why.
First, the change made inappropriateness more visible, public and at the same
time less disruptive to the community. A poll sender (as well as anyone who
responded to the poll) could see in the poll results how many people were
annoyed or thought it inappropriate without the disruption occasioned by “follow
up” polls. Second, making it easier to ‘see’ the degree of inappropriateness clearly
opened up the possibility of either policy-based regulation (e.g., “people having
more than X inappropriate responses will lose their privileges”), or worse,
termination of a useful service if there was too much abuse. The latter possibilities
were only ambiguously and subtly represented by the interface change, but were
definitely not lost on this population of corporate users.

Experiments in real-time broadcast messaging are new in enterprise
environments, and they raise many concerns about whether the benefit gained is
worth the potential disruption to a large number of coworkers. This brings us to
the second type of sensemaking in Pollcast, which has to do with choosing an
appropriate community to which to send your message. Most ICT users send their
messages to the “everyone” community, because it is the largest community, and
the possible alternative choices are hard to understand, consisting of a list of

41

hundreds of communities without any information beyond their (sometimes
cryptic) names. Unfortunately, using “everyone” when a more targeted
community would do exacerbates the “tragedy of the commons” problem that pits
an individual’s interest in getting an answer against the community’s interest in
not being excessively pinged. During the summer of 2004, we studied this issue
(in part by examining log files to ascertain the level of activity and types of
questions in each community and in part by interviewing ICT users and
developers) and designed a prototype to give users more information about the
activity level, participants, and typical questions of various ICT communities. By
making such social information visible, we hoped to better address the tradeoff
between getting a swift answer and imposing unnecessarily on the larger
community. At least one aspect of the prototype has been implemented as of this
writing: ICT communities now show the number of subscribers currently logged
on to ICT, giving questioners some idea of the size of the audience to which they
are broadcasting (and thus some way to estimate the likelihood of a response).

5 Social Translucence and Appropriation
From the dawn of modern computing with “end users” getting their (situated)
hands on technology and applications, technology has been “appropriated” and
assimilated into activities and work practices. Designers and developers of
technology can’t prevent appropriation, nor should they seek to, but they can
attempt to make it easier and the possibilities richer – both by creating
intentionally malleable software, and, as discussed here, by designing socially
translucent software. By creating support online for basic, everyday human
activities – sensing who is around and with whom you are interacting, being able
to observe others’ behavior, knowing what others can observe about your own
behavior, and being able to converse with others under well-understood
circumstances – technologists create optimal conditions for appropriation work.
Collective sensemaking and social scaffolding are central to the essential
appropriation work of understanding the capabilities of a technology, and
negotiating with others as it is adapted for use in particular circumstances. We
believe that social translucence – providing perceptible social cues that lead to
mutual awareness and accountability – can support these key activities in
appropriation work.

6 Acknowledgments
Thanks to the members of the Social Computing Group for their inspiration and
collaboration.

42

7 References
Ackerman, M., Halverson, C., Erickson, T., and Kellogg, W.A. (in preparation). Resources, co-

evolution, and artifacts: Theory in CSCW.
Danis, C. and Lee, A. (2005). Evolution of norms in a newly forming group. In Proceedings of

INTERACT 2005; Rome, Italy.
Erickson, T. (2003). Designing visualizations of social activity: Six claims. In Human Factors in

Computing Systems: Extended Abstracts. New York: ACM Press.
Erickson, T., Halverson, C., Kellogg, W.A., Laff, M., and Wolf, T. (2002). Social translucence:

Designing social infrastructures that make collective activity visible. Communications of the
ACM (special issue on Community, ed. J. Preece), 45(4), pp. 40-44.

Erickson, T., Smith, D.N., Kellogg, W.A., Laff, M.R., Richards, J.T., and Bradner, E. (1999).
Socially translucent systems: Social proxies, persistent conversation, and the design of
“Babble.” In Human Factors in Computing Systems: The Proceedings of CHI’99.

Eriksén, S. (2002). Designing for accountability. In Proceedings of the second Nordic conference
on Human-Computer Interaction, NordiCHI 2002.

Feldman, D.C. (1984). The development and envorcement of group norms. In Academy of
Management Review, 9(1), pp. 47-53.

Jasperson, J., Sambamurthy, V., and Zmud, R.W. (1999). Social influence and individual IT user:
Unraveling the pathways of appropriation moves. In Proceedings of the 20th International
Conference on Information Systems. Charlotte, North Carolina.

Mark, G. (2002). Conventions and commitments in distributed groups. Computer Supported
Cooperative Work, 11(3-4), pp. 349-387.

43

Leveraging the language action
perspective for system accountability
and end user configurability
Gianni Jacucci,
Diego Calzà,
Vincenzo D’Andrea
Dept. Sociology and Social Research University of Trento, Italy
gianni@lii.unitn.it

Arthur B. Baskin
IIT, Indianapolis, Indiana (USA)

Ina Wagner
Technical university of Wien

Abstract. Computer supported collaborative work practices could afford substantial
improvements in terms of user appropriation. System accountability and user-
configurability in particular could be enhanced leveraging the Language Action
Perspective on Communication Modelling (LAP). This position paper provides a brief
outline of our research agenda.

1 Introduction
We are hopefully at a turning point in the evolution of the Information Systems
(IS) field, and of computer supported collaborative work practices [1]. User
appropriation of IT appears to be methodologically within reach. In particular,
design for accountability and design for emergent use appear to be within reach,

44

because of recent work leveraging on the Language Action Perspective, presented
at the series of conferences called ALOIS (Action in Language, Organisations and
Information Systems) and LAP (Language Action Perspective) [2].

Object of the present communication is a research agenda, encompassing
information systems and organisations, based on the social study of information
and communication technologies, and specifically on LAP, featuring a
methodology based on:

i) e-Negotiation [16] to provide end-users, or their representatives, with expert
support for:

a) the identification of system viable end-user tailoring moves, and
b) requirements validation to allow the end-user tailorability to be checked

against eventual governing rules and laws in the domain. In that way, the users, or
their representatives, could make changes but only within the allowed variations.
ii) ISAT (IS Actability Theory) [3] and Thematic Roles [4] for implementing the
use of Use Cases in design for accountability, and in design for end user design in
use (DEUDU, [5]), attempting to exploit thematic-role derived work-graph
representations.

Let’s start with a word of caution on scope, and of explanation on terminology.
In this attempt, we would like to address issues related to design and co-evolution
of human work practices and information infrastructure support, resulting in the
complex dance of human and machine agencies in organisations [6].

Furthermore, in this paper, the concept of Use Case coincides with the original,
traditional definition of a natural language description of the succession of actions
and actors in activities involving computer support of human work.

In the following, the key issue is human interpretation, analysed with the
thematic role theory [4] linking representations (used by humans and machines)
to actions (of both humans and machines). A key concept will be that of the
thematic role derived work graph representation [4], a representation of work
activities which is intended to be understandable at the same time both by users
and by machines, for the purpose of enabling their collaboration in many ways, in
the tailoring and evolution of the work graph itself, and of the Use Case it
represents.

In 2002 Jacucci et al [5] proposed the use of Use Cases in Design for End User
Design in Use (DEUDU). No methodology however was given at the time for
carrying out that proposal. In this paper, we advocate the development of a
methodology, based on the Language Action Perspective, on e-Negotiation, and
on the Thematic Roles Theory, for analysing interpretations linking
representations to actions in the natural language Use Case description. The
methodology should enable the use of use cases both in design for accountability,
and in design for end user design in use. PD is an essential approach to IT design.
LAP has been explicitly espoused with PD over a decade ago [9]. We take explicit

45

account of this merging in our Use Case development and we profit from it in our
approach.

2 A research agenda to put the new perspective
to work

In order to be successfully deployed and implemented, the technological power of
ICTs needs support and respect to humans and organisations, and care taking of
their needs. The social study of information and communication technology (see
the book recently promoted by Claudio Ciborra at the London School of
Economics [7], and his own previous book [8]) has motivated the tenets of this
proposed research agenda. Participation – of users and stakeholders – to the
design of IT use, is one of the most prominent needs of humans and organisations
[9]

The outcome of a Participatory Design (PD) approach are a number of design
imperatives towards design for change, design for configurability, and design for
emergent use (ref. my DEUDU); in particular:

! design for accountability [10, 11]
! design for end user design in use (DEUDU, [5])

Improved human machine cooperation can be further promoted by three main
paths enhancing possibility of establishing a web of shared understanding and co-
operation between humans and computers:

! action in language and organisation for information systems [2]
! interaction design and tangible computing [10]
! double dance of human and machine agencies [6]

Let us zoom on accountability (the system capacity of giving account of itself,
provide sense making to users). System users do not know what systems are for,
nor how they should be operated [11]. We should care for developing
accountability of IT instruments to humans in knowledge communities. Systems
should display “business” logics: system displays should emphasize system action
aspects, in terms of knowing how a system works, its “business” logics, rather
than just its operations [4].

Let us zoom on DEUDU, and the adaptability to situation. We should beware
of limitations of planned/allowed use-scenarios. We should allow change in
situation: introduce DEUDU (Design for End User Design in Use) as system
adaptability by user intervention. Not easy: it requires brokering the needs of
humans for ‘gestalt‘ and the need of machines for hierarchy. Analysis on the
problem situation recalls a foundational book indicating/advocating the new
perspective to replace the rationalistic tradition. It is entitled “UNDERSTANDING
COMPUTERS AND COGNITION”(A new Foundation for Design), authored by
Terry Winograd & Fernando Flores, Addison – Wesley 1986 [12].

46

This book questions the assumptions of the rationalistic tradition about the
objectivity of our representations of the world. This tradition provides us with a
rationalistic perspective that serves as a basis for our culture’s commonsense
understanding of language, thought, and rationality

3 Looking for tools from the Language Action
Perspective

User satisfactory IT use requires IT accountability and IT configurability in use.
A seminal paper of Goldkuhl and Lyytinen of 1982 [17] opens the way of LAP (
the Language Action Perspective) . In the LAP on IT use, developed for
supporting social interaction and work, IT infrastructures is language. For
linguists, language has two main dimensions: semantics (propositional) and
pragmatics (illocutory) [12]. As a consequence, also IT use must have two
dimensions, semantics and pragmatics. This is in fact a user’s tacit assumption. If
only one dimension is carefully designed for use and satisfactorily implemented,
while the other dimension is not taken into account and elaborated, then user
frustration in use ensues immediately.

How do we proceed to address IS accountability and DEUDU remembering
that ISs are language?

Zooming on language and speech act theory permits to identify two
communicative functions:

! propository (semantics: content, meaning)
! illocutory (pragmatics: intentions, commitments)

This allows a new methodology for IS design. If ISs are language, then we
should address need for both kinds of communicative acts. Par Ågerfalk [3] has
provided us with a very nice example, from the analysis of a system assisting the
handling of college syllabus.

This section lists telegraphically highlights of recent advances in the LAP area
that can help solve the problems of our research agenda.

Closes this section the reference to a proposal of a representation language for
actions based on interpreting language actions with thematic roles theory [4].

Communicative Aspects of IT-Usage [12]
In the field of IT-design the prevailing language perspective is a referential

one. The most fundamental activities of system design are seen as the mapping of
a universe of discourse into abstract symbolic models and databases.

But the “descriptive fallacy” of methods and techniques for IT-design has been
attacked, and a new set of methods, techniques and software artefacts has now
evolved that may be seen as a kind of “communication paradigm”, in the way
Winograd and Flores argued for a “new foundation of design”.

47

This new orientation in iT-design is directed towards the development of
computer software for organisational communication and action. Organisations
are viewed as networks of commitments and undertakings.

A communicative or language oriented view of IT-design may be rewarding: a
large part of work is performed through language, and IT is used to support
communicative activities to a considerable extent.

Conversation for Action [Flores and Winograd, 1988 13]
Speech act theory as a foundation for design has produced a generic schema of

conversation for action, that has widely influenced the area of Workflow
Management, CSCW, and BPR.

A conversation is a coordinated, coherent sequence of language acts.
At each point in the conversation, there is only a small set of possible action

types.
A discourse may be defined in a state transition diagram, where each state-

transition corresponds to a speech act.

State-transition diagram from a workflow
For each task there is a workflow, which includes communication with the

customer, according to the state transition diagram for the workflow of that task.
The basic workflow loop has four phases, through the fulfilment of

commitments by a performer to the satisfaction of a customer.
According to this view, any work activity can be sequenced in four basic steps:
! preparation: the customer makes a request, or the supplier makes an

offer;
! negotiation: the parties establish a mutual agreement of conditions of

satisfaction;
! performance: the supplier declares that the undertaking is complete;
! acceptance: the customer declares satisfaction.

Several circles of can be interconnected with links, such that a speech act in
one workflow may trigger one in another workflow. In this way, one workflow
can be viewed as a sub flow to another workflow.

The basic workflow loop is used as a means to articulate customer-supplier
relations, with customer satisfaction in focus. There is always an identified
customer and a performer, with the loop representing a particular action the
performer agrees to complete to the satisfaction of the customer.

Using the ALOIS related work of Ågerfalk, Goldkuhl, Andersen.
We propose to use the conversation-for-action schema, as enriched by Kensing
and Winograd, and by Andersen, to design the communicative aspects of IT-usage
in the end-user-tailoring of IT, accepting to be affected by all limitations elicited
in Speech Acts on Trial (Ljungberg and Holm, 1996 [14]), except for the
additional flexibility provided by tailoring. For IT-design, we propose – within

48

the same limitations - to marry the language action approach to PD, as already
done by Kensing and Winograd. Note that Kensing and Winograd had already
coped with unanticipated breakdowns by combining specialised and more general
conversation patterns in a uniform framework.

As a methodology implement, for DEUDU (Jacucci et al., 2002 [5]) and end-
user tailoring for flexibility in emergent use, we intend to use the ALOIS related
work of Ågerfalk, Goldkuhl, Andersen. For providing end-users, or their
representatives, with expert support for:

(1) the identification of system viable end-user tailoring moves, and
(2) requirements validation to allow the end-user tailorability to be checked

against eventual governing rules and laws in the domain. In that way, the
users, or their representatives, could make changes but only within the
allowed variations,

e-Negotiation: A Language-Action Approach to Electronic Contracts
We intend to use the work of Schoop and Jertila on e-Negotiation [16]: The
Language-Action Perspective and the Semantic Web – A Language-Action
Approach to Electronic Contracts, recently presented LAP 05, June 19-20 2005,
Kiruna, Sweden.

e-Negotiation is communication-intensive. In order to enable electronic
negotiations, the complex communicative exchanges need to be supported by
means of information technology. The Language-Action Perspective can provide
a suitable theoretical and conceptual basis. In addition to the communicative
exchanges, document management also plays a vital role for e-negotiations.
Semantic web ideas can be most useful for this part of a negotiation. Ref [16]
presents an integrated approach implemented in the negotiation support system
Negoisst that combines LAP and Semantic Web and enables the support of highly
dynamic complex electronic negotiations in a business-to-business environment.

We propose to apply e-Negotiation as developed in [16] to provide end-users,
or their representatives, with expert support for:

a) the identification of system viable end-user tailoring moves, and
b) requirements validation to allow the end-user tailorability to be checked

against eventual governing rules and laws in the domain. In that way, the
users, or their representatives, could make changes but only within allowed
variations.

We would now be ready to come down to cases, and try to solve specific
domain problems (Distributed Collaborative Engineering, IT for Tourism, eGov,
Health Care, HRM, etc.). Objective: Solve IT accountability and end user
configurability in use, with the help of the methodology. In particular we need to:

! Indicate how humans and machines would be able to interpret each other.
! Indicate how design expert can come in picture to support users in

tailoring.

49

! Indicate how upper software layers would be built in the OOAD
framework.

! Indicate how humans would work with the IT infrastructure.
! Indicate how the IT infrastructure would function.

In an application example, one should:
! Discuss aspects of accountability and end user configurability.
! Make example of applications of e-Negotiation.
! Make examples of application of Actability Theory of IS.
! Make examples of application of Thematic Role Theory.

4 Conclusions
In general, communication and the establishment of a web of shared
understanding between humans and machines, can be better achieved following
the LAP perspective and its recent developments described above. e-Negotiation
with design experts can support users in understanding IT infrastructures in use
and identifying their allowed and useful configuration tailoring options.

Besides, design for accountability could be further pursued by analysing and
identifying human interpretations of Use Case sentences with thematic role
theory, and exposing them explicitly in the user-machine interaction by drafting
and displaying the thematic role derived work graph diagrams.

Design for end user design in use could be pursued by analysing and
identifying human interpretations of Use Case sentences with thematic role
theory, and exposing them explicitly in the user-machine interaction by drafting
and displaying the thematic role derived work graph diagrams, where are also
displayed both a) alternative routes to work performance, and b) tailoring
opportunities of the work graph exhibited in the work graph diagrams by
appropriate graph modification controls.

5 Acknowledgments
Numerous useful discussions with Par Ågerfalk, Peter Bögh Andersen, Goran
Goldkuhl, Finn Kensing are gratefully acknowledged.

6 References
[1] Baskin, Kovacs, and Jacucci, eds., 1999, Cooperative Knowledge Processing for Engineering

Design, Kluwer.

50

[2] ALOIS 2004, “Action in Language, Organisations and Information Systems”, Seminar in
Linkoping, Sweden, http://www.vits.org/konferenser/alois2004/proceedings.asp ; LAP 2005,
The Language Action Perspective on Communication Modelling,
http://www.vits.org/?pageId=238&UltimateMenu1B=Item12

[3] Sjöström J. and Ågerfalk P. (2004) Analysis of communicative features of user interfaces. In
ALOIS Workshop: Action in Language, Organisations and Information Systems, ed. G.
Goldkuhl, M. Lind and S. Cronholm. Linköping, Sweden: Linköping University.

[4] Andersen P.B. (2004), Analysing and Diagramming Complex Heterogeneous Activities, In
ALOIS Workshop, ibid.

[5] Jacucci G., Calzà D., and Dandrea V. (2002), Use of Use Cases in Design for End User
Design in Use, Report, Department of Sociology and Social Research, University of Trento

[6] Rose, J. and Jones M. (2004). The double dance of agency: A socio-theoretic account of how
machines and humans interact. In ALOIS Workshop, ibid.

[7] Chrisanthi A., Ciborra, C., and Land F., 2004, The Social Study of Information and
Communication Technology: Innovation, Actors and Contexts. Oxford: Oxford UP.

[8] Ciborra, C., 2002, The Labyrinths of Information: Challenging the Wisdom of Systems. Cambridge:
Oxford UP. [9]

[9] Kensing F., and Winograd T. (1991), "The language-action approach to design of computer support for
cooperative work," Proceedings of the IFIP TC8 Conference on Collaborative Work, Social
Communications and Information Systems, Helsinki, Finland

[10] Dourish, P., 2001, Where the Action Is: The Foundations of Embodied Interaction.
Cambridge MIT Pr.

[11] Eriksen S., 2002, Designing for Accountability, in Berthelsen O., Bodker S:, and Kuutti K.,
eds., NordiCHI 2002

[12] Winograd T. and Flores F. (1987), Understanding Computers and Cognition: A New
Foundation for Design, (220 pp.) Norwood, NJ: Ablex, 1986. Addison-Wesley.

[13] Flores, Fernando, Michael Graves, Bradley Hartfield and Terry Winograd (1988),
"Computer systems and the design of organizational interaction," ACM Transactions on
Office Information Systems 6:2 (April, 1988), pp. 153-172.

[14] Ljungberg, J. and P. Holm (1996) Speech Acts on Trial, Scandinavian Journal of
Information Systems, Vol. 8, nr. 1.

[15] Sowa J. E. , 2000, Knowledge Representation: Logical, Philosophical, and Computational
Foundations Pacific Grove, CA: Brooks/Cole

[16] Jertila A. and Schoop M., 2005, The Language-Action Perspective and the Semantic Web –
A Language-Action Approach to Electronic Contracts, LAP 2005, Kiruna, Sweden;

http://www.vits.org/konferenser/lap2005/Paper%2012-LAP.pdf
[17] Goldkuhl G. and Lyytinen K., 1982, A language action view of information systems,

Proceedings of the 3rd international conference on information systems, TIMS/SMIS/ACM

51

http://www.vits.org/konferenser/alois2004/proceedings.asp
http://www.vits.org/?pageId=238&UltimateMenu1B=Item12
http://www.vits.org/konferenser/lap2005/Paper%2012-LAP.pdf

What’s in a name? Exploring the
connections between abstraction and
appropriation
M. Cameron Jones,
Michael B. Twidale
Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
mjones2@uiuc.edu, twidale@uiuc.edu

Abstract. In this position paper, we discuss the role of abstraction in designing for
appropriation. We examine the ways in which varying the level of abstraction of tools
affects the ability of users to appropriate them. We close with some words about the
difficulties of evaluating the appropriability of systems and how they might be addressed
in an experimental framework.

1 Introduction
A focus of computer systems design research has been building systems which are
capable of being appropriated by users. In order to build systems that explicitly
support appropriation, the factors which affect appropriability must first be
identified. One such factor is the manner in which software tools are described.
This is especially true in component-based software development (CBSD)
environments which are designed to enable end users to combine components in
order meet their particular needs. These systems often are extremely flexible and
powerful. They combine all three aspects of tailoring as described by Mørch
(1997); namely customization, integration and extension. Users can configure
customizable options for each component, arrange and rearrange components in

52

any number of combinations to create new compound functionalities, and even
generate new components through coding or sharing templates.

Based on preliminary observations of a community learning toolkit, it would
appear that tailorable tools, when abstractly described to encompass maximal
flexibility and customizability, are less appropriable than when provided as a
narrower, particular instance. This is a significant problem for researchers and
developers of tailorable technologies, as it contradicts the practice of offering the
most flexibility and the greatest customizability to the user for the sake of
allowing them to fashion whatever they would like.

2 The Story of the Timeline Tool: Anti-Affording
Appropriation

The ILABS system, short for Community Inquiry Labs, is a framework and a set of
tools, called bricks, for supporting online communities of inquiry (Bishop, et. al,
2004). The aim of the system is to enable participants to put together a customized
environment that will support learning and knowledge sharing for a particular
community of users. Examples of the diversity of communities using ILABS
include university courses, a Puerto Rican community library project, an African-
American women’s health network, and a multi-disciplinary research initiative.

One of the first bricks developed for the ILABS project was a timeline tool. The
original timeline brick was built around the needs of a professor for one of his
classes. The Learning Technologies Timeline existed as a static HTML page,
maintained by the professor, which students researched and contributed items to.
The initial timeline brick was built specifically to address data of this form,
helping the professor update and manage the timeline. The resulting tool had input
fields for a date, event, URL and description; the data was sorted in ascending,
chronological order.

 Figure 1 Figure 2

Figure 1 shows a view of the Timeline tool, almost identical to the original HTML based Learning
Technologies Timeline. Figure 2 shows the interface for adding and editing items to the Timeline.

Note the specific names of the fields.

53

Although developed for one professor, the timeline brick was used by other
groups. This straight forward tool was easy for users to comprehend – the
structure and name of the tool accurately reflected its purpose. The concept of a
“Timeline” was familiar and did not need much documentation to explain its
purpose and use. Shortly after introducing the tool, we noticed that many people
were using the timeline brick for other purposes such as organizing upcoming
events, email addresses, daily schedules, and other tasks that involved creating an
ordered list of items. We consider these unintended uses to be appropriations of
the software – allowing the users to accomplish their goals by creative use of the
technology available to them. That is, by looking at examples of timelines created
with it, not only were they able to develop their own timelines but also imagine
using it for other purposes.

In light of these new uses, we redesigned the tool to be a more generalized key-
sorted data table. The new tool was more customizable, allowing users to specify
the number, name and data type of the fields, and change the sorting behavior. In
order to communicate the breadth of this tool's functionality we renamed it the
“Sorted List” to emphasize that it was now a tool from which any number of types
of lists could be created, of which timelines were just one example.

Figure 3: A screenshot of the new Sorted List creation tool, showing the numerous configuration
options. Users can define a name, data-type and display options for each field. On subsequent

steps of the configuration wizard, users can define sorting behaviours. This very powerful,
abstract tool actually led to less appropriation.

Unfortunately we noticed in informal observation and feedback from users that
most users did not know what the new, improved Sorted List tool was or why they
would want to use it. The Sorted List was described as a tool which enabled users
“to create different kinds of sorted lists as content for your iLab”. Even when the
description was modified to include examples (the addition of the phrase “like
bookmarks, contact lists, blogs, etc.” to the previous description), users still had
troubles understanding what the tool was for. This was very frustrating to us as
developers of this tool. We had initially developed a tool that happened to lead to
informal spontaneous appropriation. Noticing and valuing that phenomenon, we
had put substantial effort into refactoring the design, and created an abstracted

54

functionality far more powerful, adaptable and tailorable than the original, but had
ended up with something that was used less and hence adapted and tailored less.
Why was this? We suspect that in the process of adding power by abstraction,
what was lost was an understandable model which users could grasp; an existing
context where they could observe what the different configuration options were
for.

To address this paradox we incorporated specific configurations of the list tool
as starting points from which users could adapt to their particular needs. The
configurations currently supported includes: the timeline, task-list, address book,
bookmarks, glossary and blog. These configurations are not merely default
settings for the various configuration options; they each represent a distinct
conceptual purpose or use-instance of the tool. Not only can users get by with
making fewer reconfigurations, but the cognitive overhead of adapting a particular
list is less than that of instantiating the more abstract data-type of Sorted List.

Figure 4: A screenshot of the revised iLabs system showing six different configurations of the
Sorted List tool including the timeline, presented in the middle column.

From a design perspective this redesign seems a retrograde step – a hack-like
inelegant duplication of work, unnecessarily multiplying the number of options
that the user has to decide to choose from. From the perspective of a computer
scientist no new power has been added and the elegance of the previous Sorted
List tool has been corrupted. And yet we have some slight evidence from
subsequent use that this change is at least better than our first redesign. The best-

55

practices advocated in object-oriented design lead programmers to create
powerful abstractions to maximize modularity, extensibility and reusability while
minimizing redundancy (Alfonseca, 1990). These principals do not seem to enable
end users to appropriate and reconfigure in the way that programmers are meant
to search through and select from abstract classes and superclasses in Smalltalk.
Put this way, it does not sound so surprising, but that is our concern–these design
precepts are rarely articulated in sufficient detail for a clear critique to be applied
to their suitability for end user appropriation.

3 Using versus Programming
Object-oriented languages like Java and Smalltalk offer programmers vast
libraries of classes and class hierarchies from which to select, extend and use in
their applications. These libraries are similar to the sets of tools and components
made available to users of CBSD systems in that they contain a large amount of
pre-defined functionality from which a user must make informed selections. The
process by which a programmer chooses a class or module, however, is very
different from that of a user. Where a user is driven primarily by picking a
component which will do what he or she wants, a programmer must consider
other aspects such as memory usage, speed, and flexibility in addition to
functionality.

The naming of components in systems designed for end users needs to reflect
the users’ frame of reference. The classes and modules in programming libraries
are named and described by and for programmers. However, adopting the manner
of description employed by computer programmers to the description of end user
tools can be highly problematic. As evidence, we present some observations from
the DATA TO KNOWLEDGE (D2K) toolkit developed at the National Center for
Supercomputing Applications (NCSA). The D2K toolkit is a data-mining
framework, allowing users to construct data flows from modules. D2K modules
have inputs and output; they are assembled in a graphical drag-and-drop interface,
and connected by data pipes thus specifying the flow of data through the system.
Data is then loaded into the front end of the dataflow and a sequence of operations
is executed on the data as it passes from one module to the next. The toolkit
serves as both an application for end-users to mine data using the modules
provided and a platform for developers to build new algorithms by leveraging an
existing code base.

Problems arise when the toolkit is used by non-programmers (who are usually
experts in the data they wish to model but have no formal programming
experience). The graphical interface is designed to make it possible for these users
to apply advanced data-mining software easily. The problem is that the interface
is just a graphical representation of the underlying programmers’ application
programming interface (API). The API, intended for programmers, contains

56

language and descriptions which are targeted at programmers; designed to help
them make informed decisions about which modules to use and extend in their
application development. Users cannot easily navigate the collection of modules
and find ones they might want because they are organized, named and described
as they would make sense to a programmer. For example, the machine-learning
classifier modules are in different hierarchies for the different authoring
organizations (e.g. WEKA vs. NCSA classifiers). This mismatch is indicative of
what we feel is a fundamental difference, that abstraction in computer
programming languages is different from the kind of abstraction that is helpful to
users.

Similarly, the naming and description of the Sorted List brick in ILABS
changed with its development. From the perspective of the developer, there was a
logical progression; as the tool got more powerful it got more abstract – both
conceptually and in name. However, from the perspective of the user, as the tool
became more abstract, it became harder to envisage any of its different intended
uses.

4 Problems and future work
What needs to follow is a more formal and rigorous study of this phenomenon.
Much of our observations have been informally gathered through interactions
with users and usage log analysis. However, formal comparisons of the
appropriability of the various instances of the timeline tool could help in
understanding the phenomenon better. We are currently planning user studies
designed to measure how significant the abstraction and naming can be in
appropriation. A major hurdle is determining how to measure appropriation and
appropriability. Even determining an operational definition of appropriation, its
different forms and the features that afford it needs more work. We have begun
enumerating some of the aspects of technology and software which we feel afford
appropriability and might lead to evaluation metrics; this list is by no means
complete or necessarily accurate, but has been included as a starting point for
further discussion and perhaps to serve as a guidelines for evaluation.

! At-Handness: At-hand tools are those which are both physically and
cognitively available to the user. At-handness is more than physical
availability, because tools may contain features or functionality the user
does not know about and thus cannot appropriate. At the same time, there
might be a problem with ubiquitous things ‘being hidden in plain sight’.
Ciborra (1996) describes a similar concept asserting that appropriation
happens when a user becomes “intimately familiar with an innovation”,
ultimately allowing that user to be able to call upon the technology to
support day-to-day activities.

57

! Granularity: Clay offers high levels of precision and control in
sculpture, but takes a lot of knowledge and skill to mold well. LEGO
blocks are a more coarse-grained design resource which can be
assembled with lesser skill to produce rough sculptures which
approximate the smooth curves attainable with clay. LEGO construction
can also be codified precisely such that the exact same sculpture can be
reproduced whereas no two clay sculptures can be precisely the same.

! Playfulness: The degree to which a tool supports and encourages users to
‘play-around’, testing variant configurations and learning about how the
tool functions. More playful systems could lead to greater discovery of
features or generate more ideas about how to use the system in novel
ways. This idea is connected more with the notion of serendipitous
appropriation as opposed to what we've primarily been discussing – goal-
oriented appropriation. We consider serendipitous appropriation to be the
uses which arise out of spontaneous creativity – a moment when a user
realizes that the tool they have could be used to do something else. This
is unlike the goal-oriented appropriation, where a user finds a technology
which can help him or her satisfy a need or aid in attaining a specific,
defined goal.

! Sharability: The degree to which the tool supports sharing
customizations and modifications. Tools that have higher sharability
would allow users to share appropriations and learn from each other (e.g.
Nardi and Miller, 1991).

! Simplicity: Tools with complex interfaces might be too difficult to
integrate (in the words of Mørch, 1997). Simple things might just be
easier for users to understand and learn - thus increasing the at-handness.
Also, simple tools might have some atomicity in their functionality,
allowing them to be appropriated into ad hoc workflows more easily.

We believe that a consideration of the features that enable appropriation can lead
us to the specification of requirements for technologies that can explicitly support
appropriation activities by users.

5 References
Alfonseca, M. (1990). Object-Oriented Programming, Tutorial. Conference Proceedings on APL

90: For the Future. May 1990.
Bishop, A. P., Bruce, B. C., Lundsford, K. J., Jones, M. C., Nazarova, M., Linderman, D., Won,

M., Heidorn, P. B., Ramprakash, R., Brock, A. (2004) Supporting Community Inquiry with
Digital Resources. Journal of Digital Information. 5(3).

Ciborra, C. U. (1996). Introduction: What does Groupware Mean for the Organizations Hosting
it? In Ciborra, C. U. (ed.) Groupware and Teamwork: Invisible Aid or Technical Hindrance.
Wiley Series in Information Systems. 1-19.

58

Mørch, A. (1997). Three Levels of End-user Tailoring: Customization, Integration, and Extension.
In M. Kyng and L. Mathiassen, editors, Computers and Design in Context. The MIT Press,
Cambridge MA.

Nardi, B.A. & Miller, J.R. (1991). Twinkling lights and nested loops: Distributed problem solving
and spreadsheet development. International Journal of Man-Machine Studies, 34(2), 161-
184

59

Design for appropriation of ubiquity in
information systems
Riad Lemhachheche
Department of Industrial Engineering
Oregon State University
riad@lifetime.oregonstate.edu

Abstract. Computing and information systems have started to move out of the desktop
and into the environment. Design requirements are no longer limited to the classical
computer-user interface. Interactions are now expected to occur in a wider environment
and in an invisible and more natural form. A large amount of research in various field of
human – computer interaction has sought to address this evolution. Our research is
aimed at helping this evolution by providing a comprehensive vision of the requirements
for ubiquity. Once these requirements are more clearly defined, their diffusion and
appropriation by researchers and professionals will be made easier. Providing user
control is one of the fundamental requirements that we have identified. Computer-
supported collaborative technologies are one of the tools available to offer user control,
and therefore in the design of a ubiquitous user experience.

1 The search for Ubiquity
As computers become an integral part on most people’s lives and provide support
to an increased number of human activities, the computers and associated
computing devices need to be tightly integrated into people’s environment.
Ubiquitous computing (Ubicomp), also known as pervasive computing, is the
field of research interested in this relationship, seeking to bring a new vision to
computers, networks and their applications (Weiser 1999).

60

Computing has reached a stage of maturity in terms of technology and therefore
research should shift to improve the user experience associated to computing
activities (Bellotti et al. 2002). This shift implies a complete reconsideration of
the relationship between users and computing resources (Norman 1998). New
practices and design principles needs to be defined to help the transition from the
focus on pure technological improvements to an enhanced user experience of
computing anywhere and anytime.

2 The parameters for ubiquity
This research has focused on three components of the ubiquity experience
(privacy, context and adaptation) and identified general parameters supporting
ubiquity in system and application design.

! Choice and granularity: users need to be provided with opportunity to
make choices for themselves. The system or application should offer
various levels of choices for opportunity to fine tune information
disclosure, exchange and retrieval (Lederer 2003).

! Memory: users expect the system to remember about past, present and
future interactions in an useful way (Salber et al. 1999)

! Information filtering : system should filter the information flow
between the environment and the user as efficiently as possible
(Herlocker et al. 2000)

! Laws and norms (Kobsa 2001)
! User Control (Ackerman et al. 2001)
! Interactive learning: the system will learn from users continuously and

will provide users with learning opportunities as well. (Arnstein et al.
2002)

Computer-Supported Cooperative Work technologies have a big role to play in

this evolution toward a ubiquitous user experience in information systems. Once
the requirements to integrate successfully CSCW technologies in system are
defined (Lemhachheche and Porter 2005) , these technologies could support the
integration of all of these parameters in the design of successful information
systems.

3 References
Ackerman, M., T. Darrell and D. J. Weitzner (2001). 'Privacy in Context.' Human-Computer

Interaction 16(2, 3 & 4): 167-176.

61

Arnstein, L., C.-Y. Hung, R. Franza, Q. H. Zhou, G. Borriello, S. Consolvo and J. Su (2002).
'Labscape: a smart environment for the cell biology laboratory.' Pervasive Computing, IEEE
1(3): 13-21.

Bellotti, V., M. Back, W. K. Edwards, R. E. Grinter, A. Henderson and C. Lopes (2002). Making
sense of sensing systems: five questions for designers and researchers. Proceedings of the
SIGCHI conference on Human factors in computing systems: Changing our world, changing
ourselves. Minneapolis, Minnesota, USA, ACM Press: 415-422.

Herlocker, J., J. Konstan and J. Riedl (2000). 'Explaining collaborative filtering
recommendations.' CSCW '00: Proceedings of the 2000 ACM conference on Computer
supported cooperative work.

Kobsa, A. (2001). Tailoring Privacy to Users' Needs. Proceedings of the 8th International
Conference on User Modeling 2001, Springer-Verlag: 303-313.

Lederer, S. (2003). Designing Disclosure: Interactive Personal privacy at the Dawn of ubiquitous
computing. Computer Science Division. Berkeley, University of California, Berkeley.

Lemhachheche, R. and J. D. Porter (2005). 'Requirements for design of collaborative applications
and systems.' to appear in ECSCW '05: Proceedings of the 2005 ACM European conference
on Computer supported cooperative work, Paris, France.

Norman, D. A. (1998). The invisible computer, MIT Press.
Salber, D., A. K. Dey and G. D. Abowd (1999). The context toolkit: aiding the development of

context-enabled applications. Proceedings of the SIGCHI conference on Human factors in
computing systems: the CHI is the limit. Pittsburgh, Pennsylvania, United States, ACM
Press: 434-441.

Weiser, M. (1999). 'Some computer science issues in ubiquitous computing.' SIGMOBILE Mob.
Comput. Commun. Rev. 3(3): 12.

62

Studying Appropriation in Activity-
Centric Collaboration
Michael J. Muller,
Suzanne O. Minassian,1
Werner Geyer,
David R Millen,
Elizabeth Brownholtz,
Eric Wilcox
IBM Research
{michael_muller, Minassian, Werner.Geyer, david_r_millen, beth_brownholtz,
eric_wilcox} @us.ibm.com

Abstract. We describe a case study of appropriation of a research prototype by a 33-
member research community, leading to reinvention of the prototype and a successful
transfer to product. Based on those experiences, we propose some lessons learned
about designing for appropriation.

1 Introduction
This position paper contains two sections. The major section describes a case
study of appropriation in an activity-centric collaboration environment. The
second section proposes lessons learned about designing for appropriation in
collaborative computing environments.

1 Now in IBM Software Group,

63

2 Case Study of Appropriation: ActivityExplorer
We designed ActivityExplorer (AE) as the client portion of our research prototype
Instant Collaboration (IC), an experiment in activity-centric collaboration. AE
was used by a research community of 33 people during the summer of 2003, and
helped us to define a class of computing environments that fall midway between
unstructured, ad hoc collaborations (e.g., instant messaging, email) and highly
structured, formal collaborations (discussion databases, teamrooms, group
decision support systems). The research experiences of 2003 led to a decision in
2004 to include AE as a feature on IBM Workplace Collaboration Services, which
was released in 2005 (IBM, 2005). This report goes beyond previous descriptions
of the types of activities that emerged (Muller et al., 2004), and the patterns of

Figure 1. Activity Thread from ActivityExplorer.

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

Note: This completed activity thread
shows an expanded membership
view. The default thread view
suppresses members for space and
readability considerations.

E

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

Note: This completed activity thread
shows an expanded membership
view. The default thread view
suppresses members for space and
readability considerations.

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

1a

2a

3b

2d

2c

2b

1b

3c

3a

A
B

C

D

Note: This completed activity thread
shows an expanded membership
view. The default thread view
suppresses members for space and
readability considerations.

Note: This completed activity thread
shows an expanded membership
view. The default thread view
suppresses members for space and
readability considerations.

E

Figure 2: ActivityExplorer. A. Overall list of all shared objects. B. Details of one shared object.
C. Activity Thread showing one structured collection of shared objects. D. Enhanced buddy list.

E. Another Activity thread. 1a. Activity Thread, beginning with a file object. 1b. Message
object, currently accessed by at least one collaborator. 2a. User with “live” online status
indicated. 2b. Message object in overall list of objects, currently accessed by at least one

collaborator (same object as 1b, but not shown in 2b without Thread context). 2c. Chat object,
currently accessed by at least one collaborator. 2d. Chat tool with contents. 3a. Shared screen
image, currently being accessed by at least one collaborator. 3b. Shared screen tool displaying
shared image, currently being annotated by two collaborators. 3c. Shared screen tool contents.

64

media usage in the project (Millen et al, 2005), to focus on our experiences with
reinvention of the prototype’s usage by its users.

Figure 1 shows the basic unit of AE, namely an Activity Thread. An Activity
Thread is a structured collection of objects that are shared among a group of users.
Available objects in the 2003 research version included messages, files, persistent
chats, shared screen images, tasks, and folders.1 In limiting cases, an Activity
thread could include only one object, or could be “shared” by only one person.

As shown in Figure 1, members of an Activity Thread use a hierarchical
metaphor to structure their shared “live objects.” Each object is “live” in the
sense that its icon changes if someone is currently accessing it.2 A buddy list of
other users supports the more common “live names” functionality, such as
indicating online presence of a collaborator (Figure 2). As a further extension of
“live” functionality, we provide an alerting service. Whenever an Activity Thread
was touched by a collaborator (e.g., reading, modifying, or creating new content),
all members of that Thread were informed of the action via an alert message in the
Windows system tray. Some of these attributes of “liveness” are similar to
Dourish’s “active properties” in placeless documents (Dourish 2003).

As reported in Muller et al. (2004), we had designed AE to be used by
relatively small groups of collaborators, for relatively brief periods, using a
handful of objects, in each Activity Thread. We had hypothesized that small, ad
hoc collaborations would continue to occur in chat and email, and that large,
formal collaborations would continue to occur in discussion databases. Indeed,
we found 110 Activity Threads (54%) that corresponded to this pattern (2-14
objects, 1-7 days duration, a small number of collaborators).

2.1 Appropriation

We were surprised by other Activity Threads. The student interns in our group in
2003 took over AE, and made it their home environment. Led by the interns’
innovations, multiple groups of researchers also began to use AE in new ways.
The result was that the users reinvented AE through use (e.g., Antón and Potts,
2001; Bikson and Eveland, 1996; see also Muller and Gruen, 2005).3

The unanticipated usages made some AE Activity Threads into simple chat
vehicles -- out of 203 Activity Threads, a total of 71 (35%) contained a single chat
object (with an average of 18.92 turns per chat, median 7 turns, range 1-222
turns). Thus, despite the fact that these 71 Threads contained a single object, the
single chat object contained evidence (number of chat turns) of extended

1 The product version does not currently include task objects.
2 In the research prototype, the liveness was signaled by color changes. In a real product that supports

universal usability, the liveness would require a more accessible signal.
3 Some of the surprising results were clearly due to interns’ activities. However, most of the surprising

results also involved one or more non-intern research staff members, and fully half of the longest, most
surprising Threads were primarily full-time staff collaborations.

65

collaboration. Other single-item Activity Threads were composed of a message
object (24 Threads, 12%), a file object (12 Threads, 6%), a folder (3 Threads,
1%), a task (1 Thread, <1%), and a shared screen (1 Thread, <1%). There is not
space in this position paper to analyze these non-chat objects in greater detail;
briefly, we hypothesize that these were failed collaborations, in which the
intended collaboration partner never responded.

The unanticipated usages also converted some AE Activity Threads into four-
month community resources, as well as sites for detailed, extensive development
of project contents, such as writing research papers for conferences. Figure 3
presents a summary of the longest Activity Threads. The Alpha Testing and
Informal usability inspection Threads were directly related to the AE project. The
Pilot feedback, Photobook and Intern tips and tricks Threads were examples of
interns’ reinvention of AE for their own community purposes. The AJW, Eddie,
and Planning Threads were intern projects that generated large, partially archival
sets of materials. The Group 2003, Momail, and User study Threads were
researcher activities toward conference papers. The Jazz Thread was a researcher
exploration of collaborative software development environments.

2.2 Consequences

There were several consequences of these patterns of unanticipated usage. First,
AE became the default chat application for many of the interns. Some of them
never loaded the IBM-standard instant message product, because their chat needs
were met sufficiently through AE. Second, because the AE chats were persistent,
users tended to revisit the chat transcripts (the interval between the last write into
a chat and the last read of the chat was 7.55 days); some interns reported that they
used the chats as reference materials for mentors’ instructions in programming

Alpha Testing3
Pilot Feedback and Discussion1

Photobook1

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tasks
Screens
Messages
Folders
Files
Chats

AJW intern project2
Group 2003 paper4

Eddie’s summer project2

Momail paper4

Informal usability inspection3

User study on IC4

Planning for summer project2

Jazz5

Intern tips and tricks1

Thread

N
um

be
r o

f O
bj

ec
ts

2Interns’ boasters
3IC team threads
4Papers and studies

1Intern reinventions

5Software dev. project

Figure 3. The large Activity Threads, with details about the 12 longest Threads.

66

projects. Third, again because of chat persistence, users tended to put informal
communications into email, rather than into chat. The second and third
consequences show how a simple change (chat persistence) can reverse the
previously accepted “outeraction” hypothesis (Nardi et al., 2000) that chat is used
in a preliminary and transitory manner to set up more formal, content-filled, and
persistent collaborations in other media (see also Muller at al., 2003).

The fourth consequence presented difficulties. As we described in relation to
Figure 2, AE supported several aspects of “liveness:” it displayed online status of
collaborators (similar to instant messaging buddy lists), access status of objects,
and alerts when objects in a relevant Activity Thread were added, updated, or
even examined. For small groups of collaborators, the alerting feature appeared
to be useful: People were notified immediately of changes to Activity Threads
that were relevant to their work. However, for the larger Threads in Figure 3,
these alerts became annoying and even burdensome. Many of the larger Threads
had membership of all 33 people in the AE community. Any read of an object in
one of these larger Threads would create an alert for 33 people. These
community-wide Threads were not necessarily an essential part of each person’s
work. The result was that people were receiving apparently high-priority alerts
for events that did not directly affect them. Further, we observed cases of
“swarming,” in which a simple read action by one person on an object would
generate alerts to other people, who would in turn also read the object, generating
further alerts in a feed-forward loop that was limited only by the number of
people who were currently online. Users complained strongly about these
distractions in the first research prototype of AE.

A fifth consequence will eventually present other difficulties of a more positive
nature. As described above, we had anticipated that AE would be used for
relatively brief, informal, non-archival collaborations. We learned that people
might begin an Activity Thread in this manner, but that certain Threads could
grow in size and importance until they contained unique project-related content of
archival significance. Indeed, part of the strength of AE was that an informal
collaboration could begin in a chat or a message, and could grow into a larger
body of materials, eventually becoming important project records –within the
unitary AE environment. By contrast, in more conventional work environments,
users might begin the informal collaboration in a chat or email environment, and
then copy their materials into an intermediate-scale collaboration environment
such as a discussion database, and then copy again their growing body of
resources into a content management system. Thus, the flexibility of AE – its
ability to support the reinvention described in this paper – became a major
strength and “value proposition.” However, the use of AE for potentially archival
records paradoxically highlighted its weaknesses in exactly those areas: the
research prototype of AE had no mechanism for managing content over long

67

periods of time. The research prototype of AE had become more valuable than
anticipated, and its value had outpaced its ability to manage that value.

The sixth consequence was also a direct outgrowth of the appropriation. The
ability of AE to support multiple styles of work – highly informal, semi-
structured, as well as archival – led to the adoption of AE as a feature of IBM®
Workplace™ Collaboration Services product in its release 2.5, made public
during the summer of 2005 (IBM, 2005). The reinvention and appropriation that
we experienced contributed to the successful technology transfer of a research
prototype into a product feature.

3 Designing for Appropriation
A number of research programmes have focused on the strategic use of ambiguity
to foster appropriation and reinvention by users. Our work has learned from that
tradition, and has applied some of its lessons in the provision of what might be
called open-ended tools for work. Unlike work with cultural probes (Gaver et al.,
1999) or related, deliberately ambiguous objects (Boehner et al, 2005a; Kaye et
al., 2005; Sengers et al., 2005), our work begins with an anticipated context of use
– somewhat more similar to the investigations of Dourish (2003) and Boehner et
al., (2005b). Further, our work must have immediate use potential as perceived
by its end-users; otherwise, in our organizational environment, there will be little
usage and insufficient experience to lead to appropriation or reinvention. While
we appreciate the importance for critical reflection on potential techno-centric
values that may infiltrate design (Boehner et al., 2005a; Sengers et al., 2005), in
our domain we continue to assume at least a subset of those techno-centric values.

In a somewhat more techno-centric manner, Dourish considered diverse
experiences with appropriation (1999, 2003). He noted (1999) five aspects of
appropriation, which are strongly tied to our results. Flexibility of technology was
key, and indeed AE provided flexible means for representing relationships among
objects. In Dourish’s experiences, appropriation generally occurred in a
community, and as we observed, the interesting aspects of AE arose as a
community incrementally redefined how it was used, made those redefinitions
visible to members of the community, and thus redefined what AE “was.”
Finally, the community’s redefinition of AE left visible traces, and the persistence
of these traces allowed both further reflection and appropriation, and our ability,
as researchers, to study the phenomenon. Similarly to Dourish’s (2003)
description of the Placeless paradigm, AE offered the ability to co-create
structures of diverse materials that would have been managed separately by
traditional, media-specific applications.

However, our approach provided very little of the multiple levels of taxonomy
that Dourish’s placeless environment afforded. It appeared to us that the success
of AE depended precisely on the co-construction of the same shared structure to

68

organize the shared resources. In this way, or experience differed from some of
the attributes that Dourish (2003) found crucial for the success of placeless:
multiple dimensions along which to organize information, user control of
document behavior, and relaxation of requirements for the same organizational
structure to achieve mutual intelligibility. When the interns – and later the
researchers – transformed AE from a small-scale, transient collaboration
environment into a flexible place for small and large, informal and formal co-
constructions, their use appeared to depend crucially on having exactly the same
representation for all users.

Also in a more techno-centric manner, we look to Pipek’s accounts of
appropriation in a work context. Pipek (2005) mentions several aspects of
tailoring support that resonate with our users’ experiences: articulation support
(knowledge of who is doing what, and with what completion status),
demonstration support (through shared screens). However, Pipek did not observe
a crucial aspect of our experiences: the co-construction of structures for
articulation support – i.e., the piecemeal, object-by-object joint creation of the
structure of shared resources (e.g., as shown in Figure 3). Interestingly, much of
what our users accomplished was done without focused discussions (e.g., Pipek’s
concept of “use discourses”). Because our users were using AE primarily in order
to do other work (work that was not “about” AE), it appears to have been an
advantage that they could co-construct their resources without needing to engage
in a focused dialogue about the tool itself. These experiences are in strong
contrast with Pipek’s research, and with many of the tailoring and appropriation
studies that he surveyed in his thesis.

Based on these comparisons, we offer the follow additions to the preceding
advices, observations, and conceptions of design for appropriation.

! Changing reference systems – Users tended to move their focus from
informal dyads, to small teams, to large communities. They appeared to
do so fluidly, without needing to establish or declare the scope of their
frame of reference.

! Graceful adaptation to changing size and membership – In consequence,
AE needed to be able make graceful accommodations to these changing
reference systems. AE was successful in providing an informal “growth
path” from small, informal, ad hoc, to large, formal, and archival. The
research prototype of AE was unsuccessful in accommodating the
different notification, liveness, and archiving requirements of these
different reference systems.

! Changing usages and valuations – We observed distinct changes in the
usage (and hence, the meaning) of certain media. The strongest case was
the transformation of instant messaging from a transient, assistive
technology (the outeraction hypothesis) into a medium that itself

69

contained valuable records that people referred to an average of a week
after they were inscribed.

! Inversions of importance – As AE collaborators worked out their new
usage patterns, the importance of different media changed. The strongest
example is the inversion of importance and formality that occurred
between chat (more formal, more public in AE) and email (less formal
and more private, by comparison).

! Increased requirements for user control – As AE became more a part of
collaborators’ work, their need to control its attributes increased. We
saw this most clearly in users’ experience of being overwhelmed by alert
notifications, but we also learned of a number of other desirable user
control features that we are still working on.

We look forward to comparing our experiences with those of others in the
workshop. We hope develop a better understanding of which aspects of
appropriation are more important in different settings, depending on technology,
environment, and most crucially shared practices. Ultimately, shaping the use and
meaning of technology is part of individual and collective democratic practice,
and should become one of the formative phenomena for HCI in the 21st century.

4 References
Antón, A.I., and Potts, C. (2001). Functional paleontology: System evolution as the user sees it.

IEEE Conf. on Software Engineering.
Bikson, T.K., and Eveland, J.D. (1996). Groupware implementation: Reinvention in the

sociotechnical frame. Proc CSCW’96.
Boehner, K., Shay, D., Kaye, J., and Sengers, P. (2005a). Critical technical practice as a

methodology for values in design. Position paper at CHI 2005 workshop, Quality, Value(s),
and Choice: Exploring Deeper Outcomes for HCI Products.

Boehner, K., Thom-Santelli, J., Gay, G., Sengers, P., and Hancock, J.T. (2005b). Treading
uncommon ground: Designing for new shared experiences through appropriation. Position
paper at CHI 2005 workshop, Designing for Community Appropriation.

Dourish, P. (1999). Evolution in the adoption and use of collaborative technologies. Position
paper for ECSCW’99 workshop, Evolving Use of Groupware. Available at
http://www.ics.uci.edu/~jpd/publications/ 1999/ecscw99-evolution.pdf (verified 20 June
2005).

Dourish, P. (2003). The appropriation of interactive technologies: Some lessons from placeless
documents. Journal of CSCW 12(4), 465-490.

Gaver, B., Dunne, A., and Pacenti, E. (1999). Cultural probes. Interactions 6(1), 21-29.
IBM Corporation (2005). http://www.lotus.com/products/product5.nsf/wdocs/workplacehome

(verified 20 June 2005).
Kaye, J., Levitt, M.K., Nevins, J., Golden, J., and Schmidt, V. (2005). Communicating intimacy

one bit at a time. CHI 2005 Extended Abstracts.
Millen, D.R., Muller, M.J., Geyer, W., Wilcox, E., and Brownholtz, B., (2005). Patterns of media

use in an activity-centric environment. Proc. CHI 2005.

70

Muller, M.J., Geyer, W., Brownholtz, B., Wilcox, E., and Millen, D.R. (2004). One hundred days
in an activity-centric collaboration environment based on shared objects. Proc. CHI 2004.

Muller, M.J., and Gruen, D.M. (2005 in press). Working together inside an emailbox. Proc.
ECSCW 2005.

Muller, M.J., Raven, M.E., Kogan, S., Millen, D.R., and Carey, K. (2003). Introducing chat into
business organizations: Toward an instant messaging maturity model. Proc, GROUP 2003.

Nardi, B.A., Whittaker, S., & Bradner, E. (2000). Interaction and outeraction: Instant messaging in
action. Proc. CSCW 2000.

Pipek, V. (2005). From tailoring to appropriation support: Negotiating groupware usage. PhD
thesis, Oulu University. Available at http://herkules.oulu.fi/isbn9514276302/ (verified 20
June 2005).

Sengers, P., Boehner, K., David, S., and Kaye, J. (2005 submitted). Reflective design. Submitted
to Critical Computing Conference, Århus.

71

Let's harness IT for our purposes...!
Bettina Törpel
Department of Manufacturing Engineering and Management, Technical
University of Denmark, Building 424, DK-2800 Lyngby, +45 4525 6085
bt@ipl.dtu.dk

Abstract. This workshop discussion statement contains a partial embedded outline of the
double concept of objectification-appropriation as proposed by Critical Psychology.

1 Introduction
This workshop discussion statement contains an embedded outline of the double
concept of objectification-appropriation. The outline is "embedded" in the sense
that a number of related concepts from the same theoretical frame are introduced.
The theoretical reference frame is Critical Psychology. Critical Psychology, which
was mainly developed at the Free University in West Berlin, is a school of
thought in the tradition of Activity Theory that was most influential in the 1970s
and 1980s (cf. Holzkamp 1983; an introduction in English is provided by Tolman
1994). The version of the double concept presented here

! is a condensed and partial summary of the author's reading/understanding
of this double concept in Critical Psychology,

! is meant to serve as discussion impulse for clarifying what we actually
refer to when we talk about "appropriation" and

! comes together with an outline of the kind of research and development
process the author thinks is both beneficial and sustainable.

For the purposes of this (necessarily extremely reduced) embedded overview, I
will only depict particular aspects of the meanings of selected Critical Psychology

72

concepts, namely agency, (inter-) subjectivity, reasons, meaning, functionality and
objectification-appropriation.

2 Agency
Agency (Holzkamp 1983, especially chapters 6.3 and 7; in English sometimes
referred to as "action potence") denotes the kind, and extent, of presence and
personal availability of, possibilities for acting and influencing phenomena in a
way that is relevant for the individual. Each person's agency corresponds with the
relation between, on the one hand the general pool of possibilities (and
restrictions) that are available and attainable under particular historical-societal
circumstances and on the other, the way these given circumstances with their
generally available possibilities are subjectively apprehended by the person.

3 Subjectivity, intersubjectivity
For the purposes here I will refer to Critical Psychology's concept of subjectivity
(ibid, pp. 233 ff) mainly as a concept that denotes differences between
individuals, e. g. in their ways of experiencing, interpreting, reasoning and having
reasons. Subjectivity (including subjective reasons) is grounded in each person's
respective specific socio-material conditions - but cannot be derived from
studying them together with the person's movements, expressions etc. Hence,
according to Critical psychologists such as Holzkamp (1983), it is never possible
for one person (or group of persons) to appropriately grasp, predict or change
another person's subjective experiences, reasons or »world«. Rather, this has to be
reconstructed and »approximated« from each subjective standpoint, possibly by
interleaving several individuals' perspectives in intersubjective exchange (ibid,
pp. 233ff and chapters 7 and 9).

4 Meaning
In Critical Psychology, the concept of meaning (always meaning related to a
specific phenomenon; ibid, pp. 172-174 and chapter 6.3) is closely linked to
purpose and denotes what »one« can do (with this phenomenon). Two aspects of
meaning have to be distinguished: meaning in its generalized aspect and in its
specific aspect. Generalized meaning refers to the »societal average« meaning,
the prevalent, widespread or common meaning of a phenomenon. Specific
meaning (ibid, chapter 7.5) denotes the societally mediated meaning of a
phenomenon in contingency to specific circumstances: location, historically
specific constellations and situation as subjectively experienced by specific

73

individuals or groups. Here, it is central to keep in mind that most phenomena of
every-day relevance have been created by humans, exactly for serving specific
purposes (or sets of purposes). A purpose is usually a purpose for a person or a
group of persons themselves; but often it is also expected that this purpose is
generalized in the sense that the purpose will emerge as an issue for other people
as well. People then create a new phenomenon (e. g. artifact, work means,
computer application) - one that serve this purpose that has not yet been served
before - for future application by themselves and possibly by others, and this new
phenomenon may later be used by other people who face the same limits and who
have not yet had anything available that has served this purpose.

5 Functionality
The concept of functionality of means (e. g. computer applications) as used here
(and elsewhere, cf. Törpel 2004a, b) has not yet been a focus of Critical
Psychology; it is always related to some specific means, in a way that denotes the
meaning of the means: what can be done or achieved with a means, what purposes
it serves. The central point of this concept of functionality is that what can be
done »with« a means, is often not entirely »contained in« the means itself, even
though functionality, especially of a computer application, often becomes
attributed to the artifact itself (for critiques of attributing distributed functionality
to individual artifacts see e. g. Suchman 2000, Latour 1999). Instead, the actual
»functionality-in-active-use« that is ascribed to the means emerges in an interplay
between the means (e. g. computer application) and other (historically grown, co-
developed and differentiated) phenomena, such as

! further devices, work means, artifacts, infrastructures which are actively
in use and in which a new means becomes integrated,

! characteristics of the actors (or actor groups) who want to develop,
introduce, harness, make use of etc. a specific new means,

! purposes, needs, desires, agendas, objectives of the actors for the
development, introduction etc. of the means,

! the actors' specific practices and
! the involved actors' social structures in which they act, e. g.

organizations, circles.
In this way, the functionality attributed to computer applications is framed as

always being a distributed and dynamically evolving functionality in use.

6 Objectification-Appropriation
The double concept of objectification and appropriation becomes relevant in
connection with any activity-theoretical consideration of meaning (of phenomena,

74

artifacts, means, computer applications created by humans; cf. Holzkamp 1983,
pp.176-178). Phenomena (as created by humans) and their meanings develop
further over time, or rather: humans develop them further. This may be seen both
from a generalized and a specific point of view. Any individual human or group
of humans does not have an alternative to acting (also: perceiving, experiencing,
interpreting etc.) from their subjective standpoints. A phenomenon may have a
generalized meaning - but there is no authority (such as a »generalized meaning
assessment committee«) that ultimately and objectively can assess, arrive at a
conclusion and enforce what this generalized meaning is at one given point in
time. Informed guesswork (interpretation) cannot be avoided. Nevertheless, when
someone creates a phenomenon (e. g. a means) that serves a specific purpose,
helps do a specific job, overcome a limit - after the experience of not yet having
been able to serve this purpose, get this job done - this often implies that the
creators assume that this limit will be faced by others as well. Yet - nobody can
ever be sure that another person's or group's specific circumstances provide in fact
»a case« of the kind of circumstances that resulted in the development of the
original phenomenon (solution, artifact, means, computer application). This can
only be investigated by the new human or group themselves.

The local specific inquiry and the harnessing of the phenomenon (artifact,
means, computer application) in its meaning/functionality is what I refer to as
appropriation (building on Leont'ev 1973, Leontyev 1981, Holzkamp 1983). The
altering and codifying aspect of discovering, harnessing and realizing new
possibilities, meanings, functionality of phenomena that results in new (versions
of) phenomena that serve new generalized purposes is what I refer to as
objectification (building on Leont'ev 1973, Leontyev 1981, Holzkamp 1983).

7 What is needed...
In my view, the double concept of objectification and appropriation, as further
developed by Critical Psychology can provide a powerful reference concept for
developing technologies from the standpoints of the affected subjects. What is
needed are operationalizations and practical guides for beneficially and
responsibly objectifying and appropriating notions related with or attributed to the
functionality of computer applications. Another way to put this is that I think we
somehow need processes, methods and devices that support reflective and creative
development practices of computer applications toward the improvement of the
participants' quality of life. An objectifying process could then be interpreted as a
process of giving notions, concepts, practices that are in use a more »solid«,
durable, generalizeable and pervasive form when they become incorporated in
computer applications than when they remain in other forms, such as oral or
written forms. Regarding the aspect of appropriation, I think we are in need of
processes, methods and devices that support practices of understanding, utilizing,

75

re-capturing, re-inventing, questioning etc. of existing IT work means (durable,
generalizeable and pervasive forms of notions, concepts and practices that are in
use) that are in use.

8 How could we proceed in research and
development? - The double concept of
objectification-appropriation utilized for an
emancipating role of research and
development

In the view of the author, an appropriate way of approaching research on and
development of computer applications could be one that is geared toward finding,
exploring, and realizing possibilities of fulfillment and enjoyment that are within
and beyond the current possibilities. This includes becoming familiar with,
grappling with, and overcoming one's own limits, as well as (and in relation to)
the limits of the currently existing conditions of one's life. In most societies this
also implies the need to address those relations of power that on the one hand
»build a frame« around people's every-day lives and on the other manifest
themselves as immediately experienced, concrete, relations of possibilities and
restrictions.

Such approaches to research and development would hence primarily be
geared towards improving the participants' quality of life by extending spaces of
possibilities, in the sense that wider conditions are improved (or at least taken into
consideration) as part of the improvement measures. As in some other research
programmes (e. g. ethnomethodology), the research programme of Critical
Psychology requires professional researchers to be interested in those of their own
practices and life conditions that they at least partially share with other people
who are not professional researchers, and whose practices and conditions are
scrutinized during the research. People who participate in research, but are not
professional researchers, must be considered as either already qualified to be co-
researchers or to receive support by the professional researchers in their progress
towards becoming co-researchers (Holzkamp 1983, chapter 9).

The kind of approach to research and development that is proposed here is very
research-oriented, yet not necessarily in the sense of academic research, but in the
sense that people are interested in understanding, and possibly overcoming, the
current conditions, practices, limits and possibilities of their every-day lives. This
implies seeking to understand how current phenomena have evolved and how,
given the way they are, they might further develop. It also implies seeking to
discover how things could be totally different than they currently are; how
oneself, maybe together with fellows (e. g. peers, colleagues, allies, fellow-

76

sufferers), could influence historical trajectories in a beneficial direction. From
this viewpoint, causes, historical trajectories as well as reasons (from the
standpoints of the subjects) are all assumed as important constituents of individual
and societal reality. In short, such an approach would be inquiring,
communicative, alliance-oriented, understanding, improvement oriented, active,
activating, fulfillment oriented, and full of respect towards, history, feelings,
meanings and reasons (of one's own and others).

9 References
Holzkamp, K. (1983). Grundlegung der Psychologie. Frankfurt a. M.: Campus.
Latour, B. (1999). Pandora's hope: essays on the reality of science studies. Cambridge, MA:

Harvard University Press.
Leont’ev, A.N. (1978). Activity. Consciousness. Personality. Englewood Cliffs, NJ: Prentice-Hall.
Leontyev, A.N. (1981). Problems of the Development of Mind. Moscow: Progress.
Suchman, L. (2000). Human/Machine Reconsidered. Published by the Department of Sociology,

Lancaster University at: http://www.comp.lancs.ac.uk/sociology/soc040ls.htmlor
http://www.comp.lancs.ac.uk/sociology/research/restopic.htm#spatiality. Last accessed:
November 26, 2004.

Törpel, B. (2004a). Forming circles and making things happen - Designing functionality that
supports cooperative work in fragmented work environments. In: Proceedings of the 27th
Information Systems Research Seminar in Scandinavia, IRIS 27 - Learn IT, Know IT, Move
IT - August 14-17, 2004 in Falkenberg, Sweden.

Törpel, B. (2004b). Narrative Transformation - Designing work means by telling stories. In:
Bertelsen, O. W., Korpela, M. & Mursu, A. (eds.), Proceedings of the First International
Workshop on Activity Theory Based Practical Methods for IT Design, 2-3 September,
Copenhagen, Denmark. Aarhus, DK: DAIMI Report PB-574, 122-133.

Tolman, C. W. (1994). Psychology, Society, and Subjectivity: An Introduction to German Critical
Psychology. London: Routledge.

77

“Let them use emacs”: the interaction of
simplicity and appropriation
Michael B. Twidale,
M. Cameron Jones
Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
twidale@uiuc.edu, mjones2@uiuc.edu

Abstract. We look at appropriations in a number of contexts, and find that often they
involve very simple ways of coordinating functionality that seems to be at odds with much
of the approach of computer systems design that emphasizes power and abstraction. We
speculate about how we can extend this simplicity in other ways.

1 Introduction
The infamous quotation attributed to Marie Antoinette has been used to illustrate
how completely out of touch the ancien regime was from the circumstances of the
starving peasantry, and consequently how inappropriate to the point of insulting
was the proposed solution of eating cake. There are times when the aristocracy (or
should that be priesthood?) of computer scientists can, by their proposed design
solutions, appear to be equally out of touch from the needs of end users.
Designing an incredibly powerful application with thousands of reconfiguration
options and its own built in programming language to enable extensibility does
not mean that it will be adopted, appropriated or tailored by end users for their
own unique and evolving needs. EMACS is not the solution nor is it the ideal
design paradigm. This issue persists despite the great progress made in advocating
for user centered design and the development of techniques to integrate better

78

understanding of real workplace needs and practices into systems development.
Although at times this recurrent problem can be attributed to persistent developer
arrogance or ignorance of real user needs, we suspect that it is also in part due to a
fundamental part of the design ethos that most computer scientists absorb both in
formal education at universities and in ongoing professional practice. This ethos
involves a concentration on functional power, flexibility and abstraction in the
development of effective and elegant design solutions. It has enormous merit in
nearly all contexts and in no way are we advocating for its erosion. But we do at
least fear that it can sometimes get in the way of end user technological
appropriation. In this concept paper we attempt to outline some of our thinking
about simplicity and appropriation in the light of experiences with two different
research projects, and some initial work in trying to characterize the aspects of the
appropriation process.

Given that different people use the word ‘appropriation’ slightly differently,
we should clarify that we are not so much interested in the adoption of a
technology by types of people who were not expected or even allowed to use it
(e.g. Eglash 2004). Rather we want to focus on cases of innovative use of that
technology in ways that its developers had not envisaged, planned or explicitly
designed the tool to support. That is, we concentrate on appropriation-as-
innovation rather than the alternate (equally legitimate) view of appropriation-as-
empowerment. In this way the users of technologies can be involved in some way
in the co-development of the technology (Fischer 2002), without having to turn
themselves into computer scientists in order to be technology developers.

2 Paper Prototyping from Forms into Databases
A study (Twidale & Marty 1999, 2000, Marty 2005a, b) of workflow practices in
a museum that was simultaneously undertaking a digitization and a packing
process prior to a move to a new building revealed numerous cases of end users
appropriating aspects of the available technology to meet their needs. With 40,000
artifacts to pack and move, and relying on significant numbers of keen but
relatively unskilled undergraduate workers, the museum staff had to design a
system so that no artifact could get lost, even though they knew that many
mistakes would inevitably be made. Worse, they had never packed and moved
their entire collection before, so the workflow process itself would have to change
as they learned by doing. External shocks would inevitably force yet more
changes to the process – due to changing budget constraints, building schedule
changes, etc. The packing process itself involved various paper forms that were
used to record who had done which step of the workflow on which day for any
given artifact. This allowed for the tracking of all actions and the rollback and
recovery from errors. What is notable is how these forms, especially the packing
sheet, evolved over time. People would use the form in ways it had not been

79

intended for, writing additional information and notes about exceptional issues
with a particular artifact in the margin. Some of these ad hoc solutions to a
particular problem with a particular artifact gradually evolved into practices that
were applied to other related exceptions or to whole categories of artifacts. The
forms themselves were revised so that later printouts for subsequent artifacts now
had special fields and checklists derived from those handwritten practices. The
database itself (created in-house using FILEMAKER PRO) evolved in the light of
those changes to provide additional fields and automated checks. Effectively this
was a kind of participatory design using paper prototyping. However, unlike
conventional participatory design, the paper prototypes were part of the real work
process and were actually used, rather than being developed purely to inform the
design process.

In a similar way, certain aspects of the database and how it was used were
appropriated by people who were not themselves database designers or any kind
of programmer to enable them to do their job more effectively. In entering data
about an artifact into the database, sometimes a user (particularly an
undergraduate) wanted to record their doubts about a particular value. Rather than
just guessing and moving on they might enter a value followed by question marks
or even type in a comment such as “I don’t know”. These were messages through
the database to other users of that database in the future – maybe the same person
as entered the database, but several thousand artifacts later. Such commentary or
annotation is very common in paper records (as marginal written comments or
addition pieces of paper clipped or attached to a form), but is rarely seen in
databases, where the prevailing assumption is that all uses of the database can and
should be planned in advance of actual data entry. This might be desirable for
optimal design, but we suspect it is rarely achievable in reality. Similarly, the
database was used for various checking processes in later stages of packing and
unpacking. Sometimes people would deliberately enter a value into the database
that they knew would trigger an error for that particular artifact at one of these
later checking stages. This allowed them to pass a message forwards in time to do
an extra step with that artifact at that time that they knew would otherwise get
forgotten about. Again, in the physical world this is entirely unremarkable –
scrawled marginal notes, sticky notes and supplemental pages paperclipped to the
main paper form are the norm in paper workflows, but exceptional or at least
rarely remarked upon when it comes to databases.

This particular workplace study was admittedly an extreme case where the
organization really did not know much about what precisely they wanted to do,
had no experience with the moving process and yet had to get started, but we
believe that the problem of designing for change is one that should pervade
CSCW systems development.

80

3 Copy and Paste as Computational Duct Tape
A study of workplace help-giving in a variety of different settings (Twidale &
Ruhleder 2004, Twidale 2005) revealed that in almost all circumstances people
were using more than one application at a time. To achieve the work related goal,
it was often the case that an element was copied from one application and pasted
into another. Documents were frequently attached to emails and passed on to
others for comments and further copy and pasting. The use of copy and paste was
particularly evident when problems arose and a colleague was asked for help. If a
direct solution could not be found quickly, a workaround was developed and
again this frequently involved more than one application and copying and pasting
to enable the work to be done. Hopefully this kind of interaction is so familiar as
to be entirely unsurprising, and yet we believe it to be worthy of more detailed
consideration of what it achieves, how it achieves it, and what might be done to
improve or extend the approach. Effectively the people studied were creating very
complex and sophisticated workflows, but without the use of or benefits from a
workflow system. The workflow was mostly mental as they copied and pasted
between applications and handed over work elements to others either via email or
a shared database. A conventional workflow system might well have helped them
optimize their standard actions, but the power of copy-paste was in its ability to
deal with exceptions, and especially those whose resolution meant yet another
workaround with yet another application, and possibly another person to help out.
For example, a report may need some data in a particular form and style. The data
might be collected by a number of searches in an internal database, and on the
web and pasted into Excel so that all the results could be composed. A graph
might be drawn in Excel, but require some tweaking that was done in Paint before
pasting it into a Word document and passing it on to a colleague for help. Such a
process might be neither elegant nor optimal (the user might be unable to use the
report generation facilities in the database and hence be forced to manually
compose their data in Excel, and likewise not want to bother with the full power
of Excel graphing and so do some tweaking in Paint just because she happens to
be more comfortable with that tool), but it does get the job done and can cope
with a slightly different job next time.

4 Non-Computational Appropriations
We are accumulating a set of real-life appropriations to help us in trying to
understand the aspects of design that seem to afford appropriation. Non-
technological appropriations are particularly easy to collect as stories from non
computer scientists. The physical nature of these appropriations can also help in
thinking about what helped afford them, and also help in thinking about design for

81

appropriability both in conventional applications and those exploiting aspects of
tangibility found in many ubicomp settings. Here are two examples:

4.1 Ad hoc conference calling

The first happened to one of us, amongst a group of very technologically savvy
people. It shows two cell phones clustered around an office phone. The problem
was to coordinate a synchronous distributed telephonic meeting – hardly a
complex activity, and particularly ironic as it was for a CSCW design project. The
solution illustrated of putting together two cell phones each with a connection to a
remote participant alongside a desktop phone with a speaker option connected to a
third remote participant is in many ways inelegant. The sound quality was not
perfect, but enough to get the work done. Given various constraints of time and
technology (including time to learn about various possible other more elegant
solutions) the appropriation of physical affordances illustrated in the photograph
was good enough to get the job done, and in many ways faster and better than
other experiences we have had with trying to set up synchronous distributed
meetings with far more sophisticated technologies. How did it come about? The
fact that the nature of the solution is comprehensible to the reader solely from the
photograph and without complex explanation of what was done with a CSCW
infrastructure is, we believe, an interesting clue. The idea that putting the phones
near one another will enable some sort of rough and ready conference call does
not seem to require much of a flash of design inspiration, far less in fact than is
often needed to figure out how to set up conference calling on most purpose-built
phones. In this example the tangibility of the different artifacts and the ease in
which different functions are perceived as being associated with different places
(microphone, speaker), seem to help in affording appropriation. By contrast, the
conventional program with many features all treated as a single complex unit
seems to get in the way. We wonder if these aspects of tangibility and separability
mean that it will be easier to design for appropriability in a ubiquitous computing
context.

82

4.2 Raffle tickets

This example is interesting because we believe it to be the case where the
appropriated use (raffle tickets) is far more prevalent than the originally intended
designed use (coat checking). Coat check tickets make ideal raffle tickets because
they both need unique tally options, are cheap and easy to separate, and both serve
a similar job of separating and bringing together in the future. The idea of using
the physical device for a quite different purpose that happens to exploit the
affordances outlined above has propagated so much as to dwarf the originally
intended use.

5 Conclusion
As our examples have illustrated, many of the successful appropriations that we
have observed have involved very simple coordinations of technologies and
technological elements that may have relatively limited functionality, and so may
be regarded by end users as simple, even if their programmatic execution is
complex (but hidden). The simplicity of copy-paste, or writing things into a
database field definitely seem to have contributed to the success of the
appropriations. But does that mean that simplicity is a necessary attribute of
appropriability? Does that mean that we should give up on developing more
sophisticated tools, interfaces and functions and just concentrate on these simple,
rather mundane-looking ones? We are sure that it is not a good idea to go to the
extreme of full power EMACS-like generic toolkits, but we hope that it is possible
to develop functionalities that offer slightly more power than copy-paste.

One aspect of the issue seems to be the interaction of granularity and
connectivity. Too fine a granularity and one ends up with the power but the
associated complexity of EMACS and programming languages. Too coarse a
granularity and one has purpose built applications that may have some pre-
planned built-in tailoring and customization options, but that do not easily support
innovative re-use. Connectivity via widespread provision of copy and paste
facilities allow for combining functionalities between applications but without the
power and complexity of semi-automation. Automation, iteration and branching
get to the heart of computing, both the power and the complexity of programming.
No matter how helpful, congenial, benign or graphical the interface, once these
features are available, end users are in some way programming and will need to
acquire the basic concepts of trying to plan for unexpected and unwanted
outcomes such as dead ends, anomalous inputs and outputs and appropriate
termination. The manual control of the flow of control seen in our examples looks
computationally weak, but paradoxically may be a strength in terms of supporting
imaginative leaps, simple experimentation and robust ad hoc usage.

83

It can be rather disconcerting for computer scientists to consider this aspect of
appropriation, should further evidence accumulate to substantiate our claim. The
training of computer scientists frequently emphasizes certain design aesthetics.
Power and sophisticated functionality are naturally valued. It would seem very
odd to extol one system because of how little it did compared to another. Even if
such a minimalist design aesthetic is adopted (and there is evidence for the Open
Source usability debate that that is not a foregone conclusion), there is also the
problem of the abstraction and extensibility aesthetic. This is sometimes typified
as: ‘don’t build a thing – build a thing builder’. It means that designers typically
aim for generic solutions to problems to maximize power and re-use. This can
mean incorporating many tailorability options, configuration settings, and even a
programming language within an application so that it can be modified to address
a host of future unanticipated needs. The concept of the abstract data type reveals
the nature, and the power of the approach. But can such raw power (apparent in
many UNIX commands – and of course EMACS), which is so useful to a skilled
programmer, actually be a handicap for the end user in appropriating for any
purpose? Can even the abstract names given to such functionalities deter
appropriation by end users? As our work in this area continues, we plan to
systematically explore the different features that support appropriation and to
develop illustrator applications to test out those features.

6 References
Eglash, R. (2004). Appropriating Technology: An Introduction. In R. Eglash, J. Crossiant, G. Di

Chiro and R. Fouché, (eds.) Appropriating Technology: Vernacular Science and Social
Power. University of Minnesota Press.

Fischer, G. (2002). Beyond "Couch Potatoes": From Consumers to Designers and Active
Contributors. First Monday 7(12)

Marty, P. (2005). Factors Influencing Error Recovery in Collections Databases: A Museum Case
Study. Library Quarterly. In Press.

Marty, P. (2005). Factors Influencing the Co-Evolution of Computer-Mediated Collaborative
Practices and Systems: A Museum Case Study. Journal of Computer-Mediated
Communication. In Press.

Twidale, M.B. & Marty, P.F. (1999). An Investigation of Data Quality and Collaboration.
Technical Report ISRN UIUCLIS--1999/9+CSCW.

Twidale, M.B. & Marty, P.F. (2000). Coping with errors: the importance of process data in robust
sociotechnical systems. Proceedings, CSCW'00, Philadelphia, 269-278.

Twidale, M.B. and Ruhleder, K. (2004). Where am I and Who am I? Issues in collaborative
technical help. Proceedings, CSCW04. 378-387.

Twidale, M.B. (2005). Over the shoulder learning: supporting brief informal learning. To appear
in Computer Supported Cooperative Work: The Journal of Collaborative Computing.

84

Supporting Configuring as
Appropriation Work
Ina Wagner
Vienna University of Technology

Ellen Balka
Simon Fraser University

1 Background
Based on two different but complementary cases – the ‘mixed media case’
(architectural design work) and the ’wireless call system case’ (hospital work) –
we argue that taking advantage of the potential that configurable systems offer
may require attention to several ‘qualities of use’. Here we provide further
elaboration of the concept of configurability, which we have suggested elsewhere
(Balka et.al., 2005).

1.1 Configurability of space and technology relations

Different tasks may require different spatial set-ups –
people may need to be able to configure their workspace
and the equipment they need with ease (this has
implications for the design of the space and the artefacts
that populate it). Different tasks may require different
configurations of hardware and software, input and output
devices, etc. The wireless call system is made up of a

combination of telephone console, coloured lights, wireless phones, and ‘alarms’
that can be triggered in different places (patient bed, bathroom, and so forth), or
can be connected to different devices, such as beds or intravenous pumps. It is

85

also hoped that the wireless handsets will help quiet the ward, by replacing alarms
audible to all with alarm calls heard only by staff. The system (on principle)
supports varying physical landscapes of alarms and displays, which, if connected
with the mobile phone system, can be accessed from any place.

1.2 Configurability of connectivity (of people, places, materials)

Configurability also has to do with the possibility for people to arrange and re-
arrange their connections to other people and to particular places, taking account
of e.g. a varying spatial organization of activities or of changing patterns of
availability. The wireless call system was intended to reduce time and space
constraints associated with care delivery in a complex team environment, and in
doing so, to improve connectivity—of patients to staff, and staff in varied
locations to one another. Configurability also may refer to a capacity for
assembling and re-assembling materials (design representations, patient
information) so as to shift perspective, gain a particular point of view, support
specific activities, and so forth.

1.3 Configuring as direct engagement – transparency and
accountability

Designing environments so that users can develop an understanding of their
choices, receive feedback about the implications of their interactions with the
system, and that their actions are available and understandable to others, is a huge
task. In the ‘mixed media case’, architectural students’ direct, bodily engagement
with artefacts makes configuring a (publicly) visible, hence accountable activity.
Students experimented with changing the properties of a model, by applying
colour, inserting movement and context, and varying its dimension in relation to
other objects in the physical space. Using barcodes as a single interaction
mechanism proved to be a good decision. The barcode technology was easy to
understand and transparent. Barcodes were e.g. integrated into CAD drawings, cut
out, glued onto posters or models, annotated (students e.g. created their own
manuals), distributed in space, used for configuring input (images) – output
(projection surfaces) associations and for setting keywords (in a tangible way).

86

We also could see that the potential of physical interfaces (in this case

barcodes on posters, models, and other parts of the physical environment) reaches
beyond ‘mere embodiment’. They provide people with the means for producing
configurations that change spatiality, interactivity, and physical landscape in ways
that help experience, explore, present, and perform.

1.4 Configuring as part of technology use

Providing organizational resources for configuring as part of everyday work
practice is another challenge. Connected with this are issues like how much work
has to be done to configure and re-configure; can it be done by end-users or is this
a work of specialized personnel and are these people available, and so forth? In
the ‘mixed media case’, configuring was part of the pedagogy. Students were
asked to continuously transform and ‘re-program’ familiar settings. Configuring
was encouraged, and was hardly distinguishable from proper use. Students’
configuring their workspace, configuring and selecting textures to be ‘painted’
onto their models, configuring input and output devices, and so forth happened as
part of the design process.

2 Configurability
We see configurability as being intricately linked to the fact that in an evolving
environment the boundaries of activities are continuously moving. The
introduction of new technologies necessarily involves reconfiguring—often the
decision to use new technologies in a particular work setting is undertaken
specifically to serve as a catalyst for altering or re-configuring work practices.
While this fact may be purposely built into learning situations (such as in our
design students case), it may be ignored, hence poorly supported, in other cases
(such as the wireless call system case). Here, possibilities for configuration of the

87

system were shrouded in a lack of transparency about the range of configurable
features. Local adaptation and configuration (e.g. that the alarm that signalled
when a bed was being unplugged from the wall could be turned off) were at odds
with core organizational requirements. Hierarchical organizational relations and
the multiplicity of stakeholders deterred configurability. Our conclusion from this
is that configuring organizational relations is an important resource in supporting
highly configurable technologies.

Another conclusion from our study is the need to take a step further and
unravel different meanings of configuration and of the contexts in which
configuration takes place. In doing this, we are aware that we use different terms
without being able to make a clear distinction between them:

! We use the term configuring for all activities that allow users to assemble
available resources to handle their tasks. Rodden et al (2004) discuss
configurability in relation to two organizational features of interaction:
placement – how to take account of the local spatial organization of
activities; and assembly – how to facilitate the configuration and
reconfiguration of artefacts and media. Newman et al. (2002) introduce
the term ‘recombinant computing’, which builds on tools (protocols and
techniques) and interfaces for making components interoperable.

! Customizing denotes activities that are necessary to make a device or
system function in a particular environment, down to very small details
that matter to users. Many systems are designed for a certain degree of
customization, offering specific features (Andriessen et al. 2003).

! We talk of tailoring in the case that software is customized to the needs
of users. This often is to do with defining, sharing, and distributing
‘standards’ (forms, macros) within the organization. It may involve
building/modifying buttons, to writing macros, and programming on the
PC, manipulating otherwise ‘invisible’ codes (Trigg and Bødker 1994).

! These activities may involve appropriation work – users fitting a (set of)
devices, a piece of software to their needs. Bossen and Dalsgaard (2005)
distinguish between weak appropriation (flexible appropriation at the
level of the artefact) and strong appropriation (changing the technology
in ways that go beyond the intention of the designers).

Obviously the architectural students’ configuring options differ from those
open to the hospital staff. This is partly to do with the nature of design work that
makes particular configuring options relevant and attractive, partly with the
technologies that were made available to students (at a working prototype level),
partly with the fact that their work environment is small, open and experimental.

Configuring the wireless call systems happens within a complex organization
and it involves different internal and external (vendor) stakeholders. It may
involve different levels – technical (system, component, device) and
organizational (ward, IT department and so forth) - and happen at different stages

88

of the system development and implementation process. Each type of configuring
requires a specific set of skills, depending on the activity, and attention to
different resources necessary to successfully carry out configuration in relation to
each particular type of configuration.

3 Placement - taking account of the local spatial
organization of activities

For example, we observed how being able to configure the work environment for
a diversity of uses, from solitary work to group discussions, performing,
presenting, and building models, is an important aspect of design work. While
some spatial set-ups lend themselves to students’ quick and easy reconfiguring,
others may require high degrees of precision, hence time (such as, for example,
fixing the position of beamers and projection surfaces in relation to an artefact).
Space on a hospital unit needs to be reconfigured in order to support the use of the
wireless call system. A place for storing the devices needed to be created, as well
as a place for charging handset batteries, which required the cooperation of
building maintenance staff.

4 Assembly – configuring artefacts and media
Students configured input and output devices in support of their design activities
and combined technical and spatial components to explore new ways of browsing
and searching multimedia database. This is an activity that takes place as part of
ongoing work but requires some preparation. At the beginning of each work shift
each staff member had to configure the handset they would use for the day. This
entailed linking the rooms/ beds they had been assigned to the handset they would
carry for the day, and determining which staff member would serve as their
backup for calls that went unanswered during breaks and busy times.

5 Customization – appropriation in the use
context

Customizing the length of time the wireless handset rings before going to the
backup nurse is an example of a restricted set of features to be adjusted by end
users; another one would be varying the colour of different types of alarms
(associated with the patient bed, the patient’s body, the bathroom and so forth).
This may happen from time to time to adjust for changes of work practice,
staffing level and so forth. In the hierarchical environment of the hospital unit,
engagement in this level of customisation was restricted to management staff, who

89

sought input from representative users. Enacting this particular feature required
that a vendor representative alter software logs, and, although this work could
have theoretically been undertaken by hospital staff, in the case we observed, it
was reserved for the vendor.

6 Customization – fitting the application to a
particular setting

Customizing the sign-on and sign-off process to different devices (the unit’s
computer, its wireless phone system console). This is an activity that takes place
at implementation, involving the vendor, technical staff and users. It usually
requires some programming (tailoring). In an environment where each
implementation integrates a slightly different constellation of devices together
with the specifics of what is actually possible in a given setting determined by a
myriad of factors, little or no documentation may exist about the exact scope of
customization that is possible.

7 Getting an integrated system to work
An example would be getting the wireless network on the ward to interface with
the wired phone system. This happens at the pre-pilot or pre-implementation
level, with technicians, IT staff and gatekeepers for component systems solving
the complexity or messiness of particular implementations.

8 Getting a component system to work as part of
an integrated system

Setting up the phone consoles at the unit desks and setting up the wireless LAN.
This is part of the initial equipment set up or modification required as multiple
components are integrated. Most of this work would be carried out by technicians.
Decisions made during component set up may need to be altered when individual
components are brought into an integrated network.

9 Elaborating design patterns
In the design setting, users combined technical and spatial components to explore
new ways of browsing and searching. Here we talk of creating a design pattern - a
particular combination of devices and services which may serve as a relevant
exemplar from which mixed media environments for other tasks and in other

90

settings can evolve (Ehn et al. 2004). A design pattern may illustrate what is
possible conceptually, however, achieving a specific design pattern in a new
setting may rest on resolving configuration issues identified above in new ways.
Different configuration activities may be required from one setting to the next in
order to achieve the same—or a similar—result.

10 Creating a sustainable structure for
implementation, use and configurability

Integrating technological components in new ways can pose challenges to existing
roles, and can both alter and introduce new means of responsibility and
accountability. In the wireless call system case this would include clarifying who
will follow up with problems related to batteries; or defining responsibilities as
well as options for staff in case of problems and breakdowns. One example is
drawn from a phenomenon we came to refer to as ‘phantom calls’ that were not
taken very seriously by the vendor representative who said they would probably
disappear again. But eventually he was forced to check the system’s software
logs. He found an error in the configuration, which made the system attempt to
call the phones up to one hundred times if they had been receiving calls while
they were switched off (as happened frequently when staff took breaks). Creating
such a sustainable structure primarily involves management.
Configuring systems so that they work together and offer users a seamless use
experience requires that configuration occur on numerous levels, which we have
attempted to outline above. Each type of configuration involves different
constellations of actors, who come together in different groupings, governed
perhaps by different interactional norms or relations, which also must be
addressed or accounted for in efforts to sustain highly configurable systems.

11 References:
Andriessen, J., Hettinga M. and Wulf V. (2003). Evolving Use of Groupware. Special Issue of

Computer Supported Cooperative Work 12 (2).
Balka, E., Wagner I. and Bruun Jensen, C. (2005). Reconfiguring Critical Computing in an Era of

Configurability. The Fourth Decennial Aarhus Conference Critical Computing- Between
Sense and Sensibility, Aarhus, DK, ACM.

Binder, T., De Michelis, G., Jacucci, G., Matcovic, K., Psik, T.and Wagner, I. (2004). Supporting
Configurability in a Tangibly Augmented Environment for Design Students. Personal and
Ubiquitous Computing 8, (2004), 310-325.

Bossen C. and Dalsgaard P. (2005). Conceptualization and appropriation: the Evolving Use of a
Collaborariuve Knowledge Management System. The Fourth Decennial Aarhus Conference
Critical Computing- Between Sense and Sensibility,, Aarhus, DK, ACM.

91

Ehn, P. Ed (2004). ATELIER IST–2001-33064 Architecture and Technology for Inspirational
Learning Environments. Final report. Malmö School of Art and Communication.

Newman, M.W., Sedivy, J. et al. (2002). Designing for Serendipity: Supporting End-User
Configuration of Ubiquitous Computing Environments. London, ACM (2002).

Rodden, T., Crabtree, A. et al. (2004) Between the Dazzle of a New Building and Its Eventual
Corpse: Assembling the Ubiquitous Home. DIS Cambridge, Mass, ACM (2004).

Trigg, R. and Bødker, S. From Implementation to Design: Tailoring and the Emergence of
Systematization in Cscw. CSCW, Chapel Hill, NC, ACM (2004).

92

Groupware Construction with the
Oregon Software Development Process
Till Schümmer
Computer Science Department,
FernUniversität in Hagen, Germany
till.schuemmer@fernuni-hagen.de

Abstract. This position paper describes how appropriation of groupware systems takes
place in the Oregon Software Development Process. It calls for a special focus on high-
level groupware patterns as communicative and educational means for end-users and
developers.

1 Introduction
The development of groupware applications is still a difficult task. One main
reason is that both developers and end-users are not aware of possible solutions
for supporting group interaction. A second aspect is that group interaction
involves many users, which makes the definition of requirements difficult. From
that perspective, end-user involvement is one of the most important but much too
often neglected issues in groupware development.

Developers and end-users need to be supported in the requirements elicitation
and the design of tools that help to satisfy these requirements.

I argue to approach this need from three different perspectives: (1) the abstract
view on development that is not bound to the specific nature of the developed
artifact, (2) the software development perspective that focuses on processes and
tools for the development of software, and (3) the groupware development
perspective, which brings together software development aspects with social

93

aspects and thus addresses the task of groupware development from a socio-
technical view.

The basis for my abstract view on design is the holistic view, as it is currently
propagated by many designers, especially by Christopher Alexander (Alexander
2003). In his view, a holistic approach to design has to be combined with an
evolutionary process and focus on end-user education in order to empower the
enduser to play an active role in the development process. Together with
Heidegger (Heidegger 1927), Alexander puts special attention on the situatedness
of design (Alexander, Silverstein, Angel, Ishikawa & Abrams 1980). Users should
reflect on their activities whenever their flow of action is disrupted. This situated
reflection (as it was also propagated by (Schön 1983)) provides the best access to
the requirements and supports solutions that meet the requirements.

Situatedness requires that the end-user is heavily involved in the design
process. To reach this level of control, they have to be educated regarding
possible good practices – the patterns – for reshaping their environment. In A
Timeless Way of Building, Alexander defined a pattern as a morphological law
that explains how to design an artifact in order to solve a problem in a specific
context (Alexander 1979). The goal of describing best practices with patterns is
that end-users are empowered to shape their environment in a professional
manner.

These core requirements relate to current software development processes.
Especially evolutionary processes (Malotaux 2001), agile methods (Boehm &
Turner 2004), and participatory design approaches (Muller & Kuhn 1993) propose
an interaction between developers and end-users that gives the control over the
built artifact back to the end-users.

Relevant groupware development processes that focus on end-user
involvement include the extended eXtreme Programming process (Rittenbruch,
McEwan, Ward, Mansfield & Bartenstein. 2002) that focuses on involving the
user community in planning and development (instead of just a single customer
representative in XP) or an iterative process based on the STEPS process model
(Floyd 1993) that puts special attention tailoring during system use (Wulf &
Rohde 1995). The latter demands that the end-user adapts the system in order to
meet requirements that evolve from reflection in action. Other groupware
processes, like SER (Fischer, Grudin, McCall, Ostwald, Redmiles, Reeves &
Shipman 2001) put a special focus on sharing of design knowledge. But still they
do not help to shape the knowledge in a way that it can be easily used by end-
users.

In summary, the field still lacks a groupware development process that
supports end-users in a way so that they can learn, plan, implement, modify, and
share appropriations based on best practices.

The Oregon Software Development Process presented in this paper tries to fill
this gap. It fosters end-user participation, evolutionary growth, and reuse and

94

exchange of design knowledge. Patterns play an important role in the whole
process since they are the means for communicating design knowledge between
users, developers, and between users and developers. Expert Involvement 3 8 2 6
11 5 7 9 User Involvement 4 1 Analysis of forces Planning Conflicting forces
Design Pattern driven tailoring design - high level patterns - Pattern driven
groupware design - low level patterns - Scenarios Implementation Patterns &
mockups Pattern driven groupware tailoring Test & Usage Usage with diagnosis
& reflection - health map - functional tests conceptional iteration development
iteration tailoring iteration Initial forces Groupware development Discussion 10
12

While the complete process has been described before (Schümmer & Slagter
2004), this paper discusses how appropriation work of end-users is supported by
the process. After giving a short introduction to the core practices of OSDP, I will
focus on tailoring iterations that have the goal of appropriating the groupware
system during use.

2 The Oregon Software Development Process
The Oregon Software Development Process (OSDP) intends to foster end-user
participation, pattern-oriented transfer of design knowledge, piecemeal growth of
the system under development in the form of short iterations, and frequent
diagnosis or reflection that lead to an improved application.

95

Figure 1: The Oregon Software Development Process.

OSDP structures the development of the application in three kinds of
iterations: conceptual iterations, development iterations, and tailoring iterations.
Figure 1 shows these iterations denoted by the three circles.

– In conceptual iterations users and developers collaborate in scenario interest
groups (SIGs) in order to collect and refine scenarios of system use. They make
use of groupware patterns to inform their mapping of social processes to a
groupware setting.

– Development iterations focus on the implementation of the scenarios from
conceptual iterations. Users and developers collaborate to create task descriptions
and to relate these descriptions to groupware patterns. These descriptions are
collected and estimated regarding their costs and benefits. The development team
continuously focuses on the most important tasks in order to implement the most
critical aspects first. Important aspects of the development iteration include that
the list of tasks – the backlog – is made public in the user community and that the
task wishes of different users or SIGs are ordered and merged.

– In tailoring iterations users reflect on their groupware use and fix conflicting
forces by adapting the groupware system. Pattern scouts encourage the users to
share their adaptations with other users. If the adaptation matured it is formulated
as a pattern and added to the community’s pattern language.

While the first two iterations mainly take place before the system is in use, the
tailoring iteration describes how the system is appropriated during its use. The
following section will thus have a closer look at this kind of iterations.

3 Tailoring Iterations Close Up
In the tailoring iteration end-users use the application for the desired purpose.
While using the system, end-users with pattern-based design knowledge are
encouraged to reflect on their activities whenever they encounter a breakdown (9
in fig. 1). A breakdown leads to an entry in the groupware’s health map (in the
simple case, a note that a specific group need could not be satisfied with the
groupware system). In cases where the user does not detect this breakdown (i.e., if
the user feels uncomfortable but thinks that this feeling cannot be changed), an
evaluation user (as proposed by cf. (Rittenbruch et al. 2002)) can expose the
breakdown, discuss it with the user, and initiate a reflection process together with
the user.

Users then take a closer look at the detected shortcoming. First, they analyze
the forces that are in conflict (10). High-level groupware patterns help in this
process by describing frequently occurring issues, the various forces, and a proven
solution in a way that is appropriate for tailoring end-users.

96

The solution provided by the high level patterns informs the successive
groupware tailoring design (11) and the execution of the tailoring (12). Tailoring
actions can take place at different levels. In content level tailoring, the users
change the artifacts that are managed by the groupware system in order to solve
the problem. At this level, the pattern assists the user in using a tool. At the
functional level, users appropriate the functionality provided by the tool. They
activate needed functions and deactivate functions that are in the way. At the
component level, the users perform more extensive tailoring actions: they
compose functional groupware components in order to create new configurations
of applications that support the team in an unanticipated way.

To support tailoring at a group level, a pattern scout looks for solutions that
work well. As the evaluation user, the pattern scout observes users in the system
with the goal of finding recurring successful system use. The found best practice
is then discussed with the users and documented in the pattern format. Such new
best practices then find their way in the pattern catalogue. Note that these patterns
are in most cases very domain specific (e.g. patterns for supporting customer
relationship management in the context of a support system). These patterns will,
however, be used most frequently in the user community since they are
appropriated for the interaction that typically takes place in the community.

4 Experiences
The OSDP has been applied in the CURE project in which a collaborative
learning environment for the Distance University of Hagen was developed and
installed. The project showed that users and developers ware able to follow the
proposed steps and that the patterns play an important role in the communication
between all stakeholders. One could observe that users were able to play an active
role in all phases of the process. They shaped their environment and developed
new best practices (e.g., practices to support literature research). First of these
practices were captured as patterns.

The opportunity to tailor motivated users to reflect on their activities. Users
created new domain-specific patterns and provided implementations using the
tailoring mechanisms of CURE. Some users referred to patterns to support their
tailoring, others based their tailoring operations on intuition. This may be one
reason why many users reported that tailoring was still difficult.

Propagating the collection of domain-specific patterns to the users is thus still a
challenging task in order to educate the end-users and to support better tailoring
actions. In cases where patterns were used the forces were also made explicit and
discussed between the tailoring users. In other cases, the forces did not play an
explicit role.

97

5 Conclusions
This paper presented parts of the Oregon Software Development Process that
focus on the appropriation of groupware systems at runtime. The tailoring
iterations of OSDP structure end-user activities in order to support reflection on
system use, capturing of best practices, and sharing of expert-user’s
appropriations.

Most important tools in the OSDP are patterns that help to capture design
knowledge in a way that is easy to understand for end-users as well as groupware
developers. These patterns evolve during system use, steer the tailoring of the
system, and capture evolving best practices of system use.

However, the OSDP is no silver bullet. Patterns with a high level of abstraction
can often be implemented by tailoring the application, but low level patterns still
require development and design expertise by the involved software developers.

6 References
Alexander, C. (1979), The timeless way of building, Oxford University Press, New York.
Alexander, C. (2003), The phenomenom of life, Vol. 1 of The nature of order, Center for

Environmental Structure, Berkeley, California, USA.
Alexander, C., Silverstein, M., Angel, S., Ishikawa, S. & Abrams, D. (1980), The Oregon

Experiment, Oxford University Press, New York.
Boehm, B. & Turner, R. (2004), Balancing Agility and Discipline – A Guide for the Perplexed,

Addison Wesley, Boston, MA.
Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B. & Shipman, F. (2001),

Seeding, evolutionary growth and reseeding: The incremental development of collaborative
design environments, in G. Olson, T. Malone & J. Smith, eds, ‘Coordination Theory and
Collaboration Technology’, Lawrence Erlbaum Associates, pp. 447–472.
*http://www.ics.uci.edu/ redmiles/publications/B002-FGMcC01.pdf

Floyd, C. (1993), ‘Steps – a methodical approach to pd’, Commun. ACM 36(6), 83.
Heidegger, M. (1927), Sein und Zeit, 17 (1993) edn, Niemeyer, T¨ubingen.
Malotaux, N. (2001), Evolutionary development methods, in ‘Proceedings of PROGRESS 2001’,

Technology Foundation (STW), Utrecht, the Netherlands.
*http://www.stw.nl/progress2001/proc2001/malotaux.pdf

Muller, M. J. & Kuhn, S. (1993), ‘Participatory design’, Communications of the ACM 36(6), 24–
28.

Rittenbruch, M., McEwan, G., Ward, N., Mansfield, T. & Bartenstein., D. (2002), Extreme
participation -moving extreme programming towards participatory design., in T. Binder, J.
Gregory, &

I. Wagner, eds, ‘Participation and Design: Inquiring Into the Poltics, Contexts and Practices of
Collaborative Design Work – PDC 2002 Proceedings of the Participatory Design
Conference’, Malmo, Sweden.

Schön, D. A. (1983), The Reflective Practictioner: How Professionals Think in Action, Basic
Books, New York.

98

Schümmer, T. & Slagter, R. (2004), The oregon software development process, in ‘Proceedings of
XP2004’.

Wulf, V. & Rohde, M. (1995), Towards an integrated organization and technology development,
in ‘DIS ’95: Proceedings of the conference on Designing interactive systems’, ACM Press,
pp. 55–64.

99

Radical Appropriation: The
Configurations of Wireless Networking
in a Community Group
David W. McDonald
The Information School University of Washington
dwmc@u.washington.edu

Abstract. Forms of appropriating activity range from adopting a technology largely as it is
to radically transforming it to make it perform some other function. This field study
describes how a wireless community group appropriated commodity wireless networking
and transformed it to serve their goals. The study characterizes several configurations
which were promoted by community leaders, the varying drawbacks which each led to a
new, subsequent, configuration. The results identify a set of design considerations for
hardware devices that seem to facilitate appropriation.

1 Introduction
A hack, in the traditional sense of the word, is an appropriation that illustrates
some deeper understanding of a technical system. The reconfiguring of a device,
making a device specifically designed to do one thing into a device that does
something else, has slowly become more commonplace. At this time no one has
made an automobile Anti-Lock Braking System play MP3s, but some MP3
players have been reconfigured as Linux computers (Leach, Carne et al. 2003).

Wireless networking, WiFi, 802.11a/b/g, has been fertile ground for a range of
appropriation that illustrates creativity and in-depth understanding of a technical
system. War driving (Byers and Kormann 2003), packet sniffing, breaking WEP
(Wireless Encryption Protocol) (Fluhrer, Mantin et al. 2001; Rager 2001),

100

represent a range of sophisticated hacking activities in which almost anyone can
participate given access to the right software. The software lowers the barrier to
participation in a technically sophisticated activity, but someone had to create that
software first. Someone, some group, had to take their deep understanding of the
technical system and embody it in a software artifact so that less sophisticated
participants could benefit.

This study describes appropriation activity in a wireless community group, the
Northwest Wireless Group (NWG). The focus is on the radical appropriation of
commodity wireless equipment to create a wireless backbone and wireless
community access. The fieldwork describes how individuals come together to
appropriate wireless technology and solve difficult infrastructure construction and
maintenance problems. The results focus on a set of design considerations that
seem to facilitate appropriation of hardware devices.

Appropriation is commonly framed as a type of adoption of a piece of software
or a complex system. The concept of adoption is described and studied in the
computing and information technology literature (e.g. (Markus and Connolly
1990; Francik, Rudman et al. 1991; Orlikowski 1992; Levine and Rossmoore
1993; Kraut, Cool et al. 1994)) and the results can often be reexamined as
appropriating activity. Studies of the organizational implementation (deployment)
of complex systems like Group Decision Support Systems (GDSS) or Enterprise
Resource Planning (ERP), have used ‘appropriation’ as a term to describe
activities of users which are outside a normative model of system usage
(Orlikowski and Robey 1991; Galegher and Kraut 1992; DeSanctis 1993;
DeSanctis and Poole 1994; Olesen and Myers 1999). Often these are uses outside
the normative model of work activity as understood by the system designers.
Using appropriation in this way is powerful because the appropriation activities
illustrate how users bridge the gap between their actual needs and the needs as
implemented in the system.

This paper first describes the primary difference between the default wireless
networking context and how the community group reshaped the context by
defining a different networking model. This model frames three technical
configurations that the community developed over several years. These
configurations illustrate a number of difficulties that must be overcome by
individuals who appropriate hardware devices.

2 Appropriating a Context: Reconceptualizing
WiFi

The wireless industry has largely conceptualized WiFi as a localized service.
Generic access points simplify the redistribution of Internet service with built-in
software. However, the broader wireless community recognizes that WiFi

101

technology has the potential to do more than provide simple hotspot service. By
reconceptualizing how WiFi technology can be used, a larger network, not just
hotspots, can be constructed. A wireless Metropolitan Area Network (MAN) can
be developed by connecting nodes of a network through wireless connections
(Flickenger 2001), creating a wireless backbone. The Northwest Wireless Group
(NWG) is one group that led early efforts to develop infrastructure and software
to achieve a wireless MAN.

The insight that a wireless MAN can be constructed from default WiFi
components is an appropriation of the context of wireless networking. It illustrates
a gap between what users want to be able to do with wireless equipment relative
to the default design for wireless networking as promoted by the equipment
manufacturers. In this section, we illustrate the difference between the default
WiFi context and the context created by NWG members.

2.1 The WiFi Backbone Model

The challenge in reconceptualizing wireless networking is how to connect a large
number of standard WiFi nodes without using wires. This requires moving away
from the idea that a node in the network is composed of a single piece of
equipment with a single WiFi compliant radio. Nodes in an NWG network must
be more complex.

A node for the NWG network is composed of at least four pieces of equipment;
a computer, two access points and a directional antenna. A small computer serves
to route data and monitor the node. These computers often run a version of Linux.
In a basic node, one AP is used to provide local (omni-directional) connectivity
for wireless devices in the physical vicinity. A second AP provides a directional
connection to another node in the wireless network. The directional connection is
provided by directional antennas at each end of a link.

A minimal node provides a limited type of connectivity. That is, only
supporting a single directional backbone link creates network design problems.
Thus the reconceptualized network model supports nodes of differing complexity,
with different levels of connectivity to the network. Figure 1 is a diagram of how
wireless nodes are connected through directional RF links. This figure illustrates
the different levels of connectivity and the general NWG network model.

While the WiFi backbone model is conceptually possible, a fundamental
challenge in implementing this network architecture was to develop a model for
the basic NWG node. The WiFi standard included and ‘ad-hoc’ or ‘peer-to-peer’
mode which could provide the needed directional link, but in practice different
manufacturers implemented this feature slightly differently. As a result, a node
model, or node configuration, could help galvanize participation around
equipment that would interoperate and simplify how nodes were connected.

102

3 Radical Appropriation: Finding the Right
Configuration

The NWG community explored a number of possible node configurations over
the past few years. The four configurations that will be discussed generally
overlapped with each other. The community never focused solely on a single
configuration. Often configurations were explored and fielded as experiments to
test both reliability and to provide service. Each possible configuration was
promoted to the general population of participants. In most cases NWG members
purchased equipment, explored the capabilities and contributed some way to
making a working solution. In two of the cases, severe hardware or software
constraints resulted in the configurations being abandoned.

3.1 The Airport/Orinoco RG-1000 Configuration (c. 2001-2002)

In 2000 Apple Computer introduced the Airport wireless access point to the
public and initiated the low-cost public acceptance of the 802.11b “WiFi”
wireless standard. Wireless networking had been available in various forms prior
to the introduction of the Airport, but equipment was expensive and not well
supported by the most prevalent computer operating systems. The Airport
included a 56K modem that could be configured with NAT (Network Address
Translation) and bridging so that several computers on the wireless connection
could also use Internet service through the modem. With the introduction of
Airport almost anyone could quickly set up a Local Area Network (LAN) in the
home or office.

Configuring the Airport1 to boot a different operating system is not trivial.2 In
particular, the Airport needed support from a second computer running Linux or
similar Unix variant. This host machine needed to have a Network File System
(NFS) partition created that the Airport would use for a remote boot and for a
dedicated file system. On this NFS partition a special ‘.nbi’ (Net Boot Image)
would be placed where it would be available for the Airport to read. Lastly, the
firmware in the Airport needed to be “flashed” (semi-permanently modified) with
new firmware so that the device would boot from the appropriately named .nbi
file off the NFS partition of the host machine. A Linux/Unix system administrator
with two or more years of experience would find this type of configuration
relatively simple. An average user would find this configuration difficult.

1 In the following discussion “Airport” is used in the general sense of any access point that relied on the

same internal hardware.
2 The initial insight about the Airport and the first effort to get Linux to run on the device is credited to Till

Straumann. See http://www.slac.stanford.edu/~strauman/pers/airport/airport.html for more details on
how to install and configure Linux for an Airport.

103

The Airport/Orinoco RG-1000 configuration was problematic because it
required an additional machine to host the remote boot. But as well, the device
had very limited memory. With only 512K of flash memory and 4MB RAM the
device was barely able to run Linux. Routing tables, simple network monitoring
code and other configuration data all take space in the limited memory. Despite
efforts to strip Linux to the bare minimum, memory problems were common,
often causing directional links to fail.

3.2 Pebble/Soekris v.1 Configuration (c. 2002-2003)

Frustrated with the installation problems and physical limitations of the
Airport/RG-1000 the broader wireless community began exploring solutions
using Linux and embedded computers. The Pebble1 Linux distribution is
conceptually similar to that of the Airport Linux; a minimalist distribution
designed to be able to run on a range of small computers with limited memory,
disk space, and with at least one wireless card.

As NWG became frustrated with the limitations of the Airport/RG-1000
configuration, they began developing nodes around embedded computers. Soekris
Engineering developed two computers, the net4511 and the net4521, which were
well engineered and highly capable. A single net4521 could potentially support up
to four wireless connections as well as an Ethernet link to the Internet.
Conceptually, Pebble on a Soekris computer provided an ideal NWG node;
potentially a “Class A” node in a single box (see Figure 1).

The Pebble/Soekris configuration was fielded by several participants and
problems started to emerge. In general, the Pebble/Soekris configuration was
more stable and reliable than the older Airport/RG-1000 configuration. With this
reliability, people were more willing to deploy NWG nodes in locations with
limited access like roofs and other outdoor locations. NWG participants began
exploring how to inexpensively weatherize node equipment. Attempts that used
Tupperware, silicone glue, shrink wrap, and shrink tubing all met with varying
degrees of success. While the net4521 can support up to three wireless cards, this
is not practical because the amount of interference caused by RF bleed from the
cards and the pigtail connectors seriously decreases overall throughput.

While the cost of a complete Pebble/Soekris node was less than commercial
grade equipment, the combination of cost and complexity of set-up limited the
number of NWG participants who would select this equipment. As well, a third
alternative, based on an inexpensive consumer grade access point, diverted
attention and effort from the Pebble/Soekris configuration.

1 Terry Schmidt, a founder of NYCWireless in New York, initiated and led the Pebble project through

several early and critical distributions. The current Pebble distribution is available at
http://www.nycwireless.net/pebble/

104

3.3 WRT54g Configuration (c. 2003-2004)

In 2003 the Linksys Corporation began distribution of a new wireless access point
called the WRT54g. Linksys had been an active manufacturer of consumer grade
802.11b equipment that was relatively simple to install and quite popular with the
average consumer. The WRT54g was Lynksys’ first attempt at an 802.11g access
point. As a consumer grade AP the WRT54g was relatively cheap and provided
backward compatibility with the 802.11b equipment that was already widely
deployed. Thus the WRT54g represented a natural upgrade path from one
generation of wireless standard to the next.1

Like many APs and routers, the WRTs use a built-in web server and a set of
web pages to facilitate set-up and monitoring. Some of the WRT pages collect
data from web form fields and pass the data directly to a Linux command line
with little or no error checking. Because most command line shells support
multiple commands per line, this oversight allowed a user to enter a valid
parameter followed by a command separator and a subsequent set of commands.
One of the web pages allowed the user to pass parameters to the ‘ping’ command
and provided a large text field area to view the response. With this simple exploit
and a way to see the results of a general command response, the community
systematically explored the version of Linux and the available command tool set
distributed in the WRT. The community quickly realized that the WRTs had some
specific limitations, but it had flash memory and that could be changed.

The broader wireless community began efforts to create a custom version of
the WRT firmware that would include the tools that were need to remake the
WRT into more than a simple AP. Through systematic exploration and some trial
and error the community developed wrt54g_tools, a set of software tools
specifically for creating a valid firmware image. Despite this success, two
problems remained. First, Linksys had used a GPL code base and was reluctant to
release the code they had developed. Second, the WRT used a Broadcom wireless
card which was designed for the OEM (Original Equipment Manufactuer) marked
and Broadcom has never released the drivers for the wireless card.

Linksys eventually released their code to the community, but the WRT54g
configuration did not take off. The use of a Broadcom OEM wireless card with
proprietary drivers meant that the community was prevented from understanding
the underlying hardware well enough to appropriate its latent functionality. Also,
equipment manufacturers are constantly looking for ways to simplify their design
and produce a product more cheaply. In the case of the WRT, each product
revision was like dealing with a new unique piece of equipment. Changes to the
hardware, introduced by a manufacturer can be handled in software, such that to
an outsider, the product looks the same, the default functionality is the same, the

1 The relatively common availability of 802.11b and 802.11g equipment is largely a function of the fact that

they operate in the same frequency range that simplifies the engineering of the hardware (transmitters,
receivers, antennae). The other WiFi standard, 802.11a, has never achieved broad public acceptance.

105

user interface is the same, while the device hardware could be completely
different. In the case of the WRT changes happened frequently and were dramatic
enough that small revisions in the underlying hardware made the community
based firmware incompatible from one board revision to the next. For the average
user, these differences are difficult to explain and an incomplete understanding
can result in a modified device that is completely useless.

4 Facilitating Appropriation
The story of NWG is fundamentally a story of collaborative appropriation. It is
collaborative in the way the technology is systematically explored and exploited.
The collaboration spans the larger wireless community, the activities of the NWG
group itself, and the small scale collaboration of individual members as they
attempt to build and install network nodes. This study has focused on the
technical trajectory of appropriation and the systematic exploration and
reconfiguration of WiFi network equipment.

This story illustrates a number of key aspects for the design of technology that
facilitates appropriation. In particular, the story highlights how appropriation is
possible when devices have latent functionality that is identified and exploited by
users. This latent functionality is easier to identify and exploit when users have
access to patterns that illustrate aspects of the device design. Lastly, appropriation
is possible when there is some configuration stability in the device. This stability
allows users to communicate the appropriation to others and know that the
modifications will most likely work on another’s device.

5 Acknowledgments
This research would not have been possible without the NWG community and the
participants’ willingness to talk about the project. This research was supported by
the University of Washington, Royalty Research Fund Grant 65-2805 and by
contributions from Intel Corporation, Intel Research, Seattle.

6 References
Byers, S. and D. Kormann (2003). "802.11b Access Point Mapping." Communications of the

ACM 46(5): 41-46.
DeSanctis, G. (1993). Shifting Foundations in Group Support Systems Research. Group Support

Systems: New Perspectives.
L. M. Jessup and J. S. Valacich. New York, NY, Macmillan. DeSanctis, G. and M. S. Poole

(1994). "Capturing the Complexity in Advanced Technology Use: Adaptive Structuration
Theory." Organization Science 5(2): 121-147.

106

Flickenger, R. (2001). Building Wireless Community Networks, O'Reilly & Associates.
Fluhrer, S., I. Mantin, et al. (2001). Weaknesses in the Key Scheduling Algorithm of RC4. Lecture

Notes in Computer Science, Springer-Verlag. 2259: 1-24.
Francik, E., S. E. Rudman, et al. (1991). "Putting Innovation to Work: Adoption Strategies for

Multimedia Communication Systems." Communications of the ACM 34(12): 53 - 63.
Galegher, J. and R. E. Kraut (1992). Computer-Mediated Communication and Collaborative

Writing: Media Influence and Adaptation to Communication Constraints. Proceedings of the
1992 ACM Conference on Computer-Supported Cooperative Work (CSCW '92), ACM
Press.

Kraut, R. E., C. Cool, et al. (1994). Life and Death of New Technology: Task, Utility and Social
Influences on the Use of a Communication Medium. The 1994 ACM Conference on
Computer-Supported Cooperative Work (CSCW '94), Chapel Hill, NC, ACM Press.

Leach, B., D. Carne, et al. (2003). iPodLinux, iPodLinux Project.
Levine, H. G. and D. Rossmoore (1993). "Diagnosing the Human Threats to Information

Technology Implementation: A Missing Factor in Systems Analysis Illustrated in a Case
Study." Journal of Management Information Systems 10(2): 55-73.

Markus, M. L. and T. Connolly (1990). Why CSCW Applications Fail: Problems in the Adoption
of Interdependent Work Tools. The 1990 ACM Conference on Computer-Supported
Cooperative Work (CSCW '90).

Olesen, K. and M. D. Myers (1999). "Trying to Improve Communication and Collaboration with
Information Technology: An Action Research Project which Failed." Information,
Technology and People 12(4): 317-332.

Orlikowski, W. J. (1992). Learning from Notes: Organizational Issues in Groupware
Implementation. The 1994 ACM Conference on Computer-Supported Cooperative Work
(CSCW '92).

Orlikowski, W. J. and D. Robey (1991). "Information Technology and the Structuring of
Organizations." Information Systems Research 2(2): 143-169.

Rager, A. (2001). WEPCrack.

107

‘Reflective User’ in Practice:
Explorations from two cases
Samuli Pekkola
Department of Computer Science and Information Systems
PO Box 35 (Agora), 40014 University of Jyväskylä, Finland
samuli@cc.jyu.fi

1 Introduction
Information systems development (ISD) methodologies are numerous (Iivari et al.
2001). Yet, they do not address the change in the information system itself when
it is introduced into an organization, or when the organization or its environment
changes (Lyytinen 1986; de Michelis et al. 1998). It can even be said that the in-
formation systems development begins when it is introduced into an organization
(Nurminen and Forsman 1994).

One reason for the deficiencies in ISD methods and obscurities in systems de-
velopment is the difficulty of anticipating its use in the working environment (c.f.
(Robinson 1993). As a consequence, it is very difficult for systems developers to
create complete use cases or make appropriate design decisions. Instead, they
have to rely on end-users and consider them as the sources of information and
most important factors in successful systems development (c.f. Lynch and Gregor
2004). In other words, an input from the user is used to validate the appropriate-
ness of the design decisions.

But this is not an easy task. Evaluating the appropriateness is highly subjective
– the same design can be perceived correct for one, and incorrect for the other.
The situation is even more difficult if the users do not know when, how, in which
context, and with whom they would use the system – which is often the case with
research prototypes. In this position paper, I present explorations from two differ-
ent cases where the users’ suggestions for the features of CSCW systems, and the

108

feedback for the appropriateness of the design decisions are found problematic to
identify and articulate. The first case is composed of two research projects where
CSCW applications were developed to support communication and cooperation
within an organization. The second case is about a research project where tools
for inter-organizational cooperation and communication were investigated.

2 Case 1: Support for intra-organizational
activities

The support for intra-organizational communication and collaboration was studied
in two consecutive research projects: VIVA (1998-2001) and MADE (2002-
2003). In both projects, the aim was to develop a system to support the work of
mechanical engineers of a manufacturing company. The engineers worked with
others that were located in another site of the company, in their customer’s site, or
were traveling between them. Meanwhile, because of the context and the risks for
enormous financial losses, it was essential that appropriate engineers can be
contacted and information shared regardless of their location. The engineers had
worked this way for years sharing information through email and telephone and,
importantly to the developers, recognizing the problems in real-time
communication. Consequently they had a lot of expectations from the future
system, which they expected to be able to solve many problems of email and
telephone. The need was very practical and very concrete – to share information
and communicate with others in real-time. The projects were established for
answer this need; first VIVA for PC’s, and then MADE for mobile terminals.

For the applications, there was no particular purpose or context for which they
were targeted (apart from information sharing and communication). The idea be-
hind there was to offer multiple communication and collaboration tools, e.g. text
chat, audio, shared whiteboard, shared text editor, file transfer and short messages
so that the users could choose the device, or a set of many that they found the
most appropriate at any particular moment (c.f. Pekkola 2003; Pekkola et al.
2003). Both VIVA and MADE systems succeeded in term of achieving the goal.

The systems development lifecycles followed evolutionary prototyping ap-
proach (McConnell 1996). Seven different prototype versions were designed, im-
plemented and evaluated in the company. Consequently, the users’ reflections on
the appropriateness of the design were concerned. These occurred through joint
design workshops, researchers observing the work situations, making interviews,
performing paper prototype evaluations and log-file analysis, and getting direct
feedback to the developers. Different methods had dissimilar benefits: prototypes
concretized the design ideas; workshops provided a method to establish a ‘com-
mon language’ and to commonly understand the work processes and general re-
quirements; work situation observations revealed some unspoken issues of work;

109

interviews gave detailed requirements and design suggestions; paper prototypes
validated UI designs; and log-file analysis of usage and direct feedback grounded
the comments. During the development process, when the users began to see the
benefits of the system for their work, they started to propose further improve-
ments, which could make the system even better. In fact, their number increased
with the quality (i.e. lesser errors) – just as Prinz et al. (1998) proposed. The value
of the systems can be expressed in the following quote from one of the users of
VIVA:

“We could work with text chat, since it has been used and tested so much that we know it
thoroughly, and know how to apply it to different situations. And with [tele]phone, which does
the same thing [as text chat] but only quicker. Audio [in VIVA], however, is good if there are
three participants. […]. But after all, I think the added-value with VIVA is the combination of
different media.” (MT, autumn 2001)

3 Case 2: Support for inter-organizational
activities

Another project, TechMedia (2003), focuses on inter-organizational communica-
tion and information sharing. The project aims at developing ICT solutions to
support networked business operations between a manufacturer and their cus-
tomer on a factory floor level. In other words, the project tries to support coopera-
tion between groups of experts in two organizations with different objectives,
strategies, cultures, operations, practices, and technologies, among other things.

The manufacturer is the same as in the Case 1. However, now the activities are
not as time critical as earlier, since the manufacturer is offering only support ser-
vices to the customers. These include, for instance, maintenance and repairing
services, analysis of problems or potential problems, and fine-tuning and modifi-
cations for improved performance of the machine they produce. These services
are exploited in routine maintenance and minor problem-fixing operations as well
as when planning larger maintenance maneuvers.

But this is still to come. Currently, the manufacturer has no means to monitor
how their suggestions and services are considered. They can monitor a part of the
customer’s information systems, but not the whole, making it difficult for the
manufacturer to understand the context and identify causal-relationships. These
make it difficult to distinguish the benefits of the services so that they can be im-
proved, and more importantly, so that they can be sold to others. On the other
hand, the customer does not know how to make the most of the service – their
processes and information systems do not meet this objective. They have done
their industrial business without such services for dozens of years. Nevertheless,
both the manufacturer and their customer agree that there is a desperate need for
these services to keep them on the market. (c.f. Heikkilä et al. 2005).

110

In TechMedia project, the objective is to support and encourage knowledge
management between the manufacturer’s and customer’s employees at the factory
floor level. This is approached by implementing a shared workspace where the
reports on monitoring and analysis are uploaded, their statuses are monitored, and
related discussions held.

The development process was far from straightforward. At the beginning, none
of the parties; manufacturer or their customer, had any concrete idea what the out-
come would be. This was because no one knew the (business) process to be sup-
ported, the future users, the infrastructure where the system would operate, or
what information was needed to be shared. Even the need for such a system was
initially questioned by the customer. In other words, all traditional points of refer-
ence were missing. However, after organizing numerous interviews and work-
shops with different parties, it became possible to create a mutual understanding
of the problems, challenges, and solutions of a new business model.

In contrary to the Case 1, here the user is less reflective but more participative. The
appropriateness of the design solutions are still to be seen as the work is in progress, and
for instance, the (business) process is not fixed yet. Still, because the users participated in
the design and even acted as system designers, it is expected that the results are to be
validated and approved, as Lynch and Gregor discussed (2004). It is expected that overall
design is appropriate, although some details might get changed in the future.

4 Discussions
Here I have presented explorations from two different cases where the users were
involved as ‘reflectors’ for the appropriateness of design decisions. Can a
‘reflective’ user be defined accordingly?

In the first case, the research was closer to systems development. This means
that unknown variables are few. The users know what they want (on a large
scale), they are known, there is a certain process to be supported no matter how
vaguely it is defined, information flows are more or less defined, and underlying
infrastructure is known. The second case is further away from development as the
situation is more complex – basically nothing is known. There the user cannot
evaluate the design precisely. So, for the users to be ‘reflective’, the development
project must be closer to ‘development’ rather than ‘research’. Users, conditions,
processes and environment have to be simply known.

Both cases (and all the projects) followed action research approach where the
researchers attempt to alter the object of the study. In Case 1, the researchers were
more distant to the users while in Case 2 they cooperated very tightly with the us-
ers. To compare these modes of cooperation from the reflective user point of
view, in Case 1 the users were equally active but more reflective while in Case 2
they were more participative. In other words, for users to be reflective, they
cannot be too engaged with the developers. This minimizes their reciprocal

111

influence and provides a ground for objective evaluations of the appropriateness
of the design decisions. If the users are ‘too’ engaged, their role will change to as
participants influencing, and not validating, the design.

In Case 2, the number of unknown factors was extensive. Business process, the
users, technological infrastructure and information-flows were all unknown and
undefined (in fact some of them are still so after two-thirds of the project). This
led to tight collaboration with potential users. However, regardless of this kind of
intensive cooperation, one can question whether the users can really be relied on.
Each user, being reflective or not, looks at the situation from his/her perspective,
with his/her own experiences, knowledge, education, history, and tasks. This per-
sonal background is influenced by the organizational issues such as organization‘s
objectives, strategies, cultures, operations, practices, and technologies, among
others. Hence, if the user can provide comments about the appropriateness of the
design, they are more likely to be biased especially in unfamiliar cases and situa-
tions. In Case 1, the users were able to do so as they were familiar with the objec-
tives. In Case 2, this is less likely to happen as the number of variables is much
greater.

5 References
de Michelis, G., E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, J. W. Schmidt, C. Woo & E. Yu

(1998). 'A Three-faceted View of Information Systems.' CACM 41(12): 64-70.
Heikkilä, J., M. Heikkilä, J. Lehmonen & S. Pekkola (2005). 'Smart ICT support for business networks'.

Vervest, van Heck, Preiss & Pau (eds) Smart business networks. Springer: 389-403.
Iivari, J., R. Hirscheim & H. K. Klein (2001). 'A Dynamic Framework for Classifying Information

Systems Development Methodologies and Approaches.' JMIS 17(3): 179-218.
Lynch, T. & S. Gregor (2004). 'User Participation in Decision Support Systems Development:

Influencing system outcomes.' European Journal of Information Systems 13: 286-301.
Lyytinen, K. (1986). Information Systems Development as Social Action: Framework and Critical

Implications. Jyväskylä, University of Jyväskylä. McConnell, S. (1996). Rapid Development,
Microsoft Press. Nurminen, M. I. & U. Forsman (1994). 'Reversed Quality Life Cycle Model'.
Bradley & Hendrick (eds.) Human Factors in Organizational Design and Management IV.
Elsevier: 393-398.

Pekkola, S. (2003). Multiple media in group work: emphasising individual users in distributed and real-
time CSCW systems. Jyväskylä Studies in Computing. Jyväskylä.

Pekkola, S., A. Rikalainen, T. Toivonen, S. Hujala, N. Kaarilahti, R. Lintinen & P. Pohjola (2003).
'MADE - A Groupware Application to Support Real-time Activities of Distributed and Co-
operating Communities'. Groupware: Design, Implementation, and Use -9th International
Workshop (CRIWG 2003), Springer Lecture Notes in Computer Science 2806.

Prinz, W., G. Mark & U. Pankoke-Babatz (1998). 'Designing Groupware for Congruency in Use'. In:
CSCW'98, ACM Press. Robinson, M. (1993). 'Design for unanticipated use". In: ECSCW'93,
Kluwer Academic Publishers.

112

Discussion Report:
Simplicity and Appropriation
Paul Dourish,
Thomas Herrmann,
Wendy A. Kellogg,
and Gabriele Kunau
UC Irvine, Ruhr-University of Bochum, IBM T.J. Watson Research Center, and
Ruhr-University of Bochum
jpd@ics.uci.edu, thomas.herrmann@rub.de, wkellogg@us.ibm.com,
Gabriele.Kunau@iaw.ruhr-uni-bochum.de

Abstract. Going beyond the traditional view of appropriation as the customization and
tailorability of technical systems, we consider a view of appropriation as a set of
emergent socially constructed meanings enacted among a community of users – that is,
appropriation as a sociotechnical phenomenon (Dourish 2001a, 2001b). We lay out the
rationale behind such an approach, the key role of simplicity in supporting collective
appropriation, and consider how we might design for this view of appropriation. We argue
that simplicity and a design stance of “less is more” are key elements in supporting
appropriation.

1 Starting Points
Our discussion began with the realization that appropriation has several distinct
meanings, all of which were in play at the workshop. Perhaps the canonical
interpretation of appropriation is that of customization and tailoring by users. Yet
we felt that other interpretations, such as unexpected use of technology,1 or the

1 That is, unexpected by system designers and developers.

113

socially constructed meanings around technology and its use that grow out of
users’ practices, were equally interesting and worthy of consideration.

We realized that there was a set of assumptions underlying our conversation.
First, we believe that appropriation is “always already social;” this is obvious in
the case of appropriation as socially constructed meaning, but even individual acts
of appropriation are embedded in a social context, if only by virtue of the fact that
an individual who, say, customizes their software can tell others who may then
similarly customize their software. Second, we assume that users know what they
are doing, what they are trying to accomplish – in fact, they know more than
designers do about their contexts of technology use. Third, we assert that users’
understanding of a technical system and its capabilities is the basis for any
creative practice utilizing it; this is the key contribution of simplicity. Fourth,
appropriation pragmatically is a collective activity, which raises the question of
the appropriate unit of analysis for research. From this perspective, analysis must
include both the technical system and the practices of a community of users
embedded in a social context. This emphasizes the central role of communication
channels among users, and reminds us that technology itself can function as a
communication channel, either by supporting communication directly, or
indirectly by making users and their use of the technology visible to others and
thus a source of social dynamics (e.g., imitation, peer pressure, etc.).

2 Simplicity and Appropriation
Given this view of appropriation as enacted by a community of users, what is
meant by simplicity? Simplicity on this view is a relational property that emerges
from the interplay of a technology with users’ intentions and the social structures
in which use is embedded. Although a simpler technology may be easier for users
to understand, understanding in and of itself is only prerequisite to appropriation.
The community of users must also have a means of collectively instantiating and
evaluating adaptations of a technology. Such means may include a variety of
meta-capabilities, for example, the ability to communicate about the technology
itself, the ability to see the actions of others, the ability to understand how others
will see one’s own actions, etc. This also suggests that concepts such as self-
description (Kunau et al., 2005), self-regulation (Kellogg & Erickson, 2005), and
self-reference are key for understanding how to facilitate appropriation.

The consideration of how a community could possibly appropriate technology
leads to the notion of a continuum of appropriation. In its simplest form,
appropriation may simply evolve over the course of use, without explicit
management on the part of the community. At the other end of the spectrum,
appropriation may occur through a deliberate effort by the community to reflect
on how a technology can or should be used to best achieve a variety of collective
intentions and to learn from experience (e.g., by establishing norms or locally-

114

adapted use practices). Of course, there is also room for a variety of appropriation
mechanisms between these extremes.

Considering how use might spread through a community of users, we also
realized that appropriation is not necessarily always “good” or appropriate. The
practice of responding to warnings promulgated through email is encouraged
when unsuspecting users forward such emails to their trusted correspondents;
when these are in reality virally-spreading phishing schemes, as they often are,
this is not good. Advice to set your file sharing permissions a certain way to
facilitate music sharing that in fact exposes personal information on one’s hard
disk is not a good adaptation to make. Thus, the easier it gets for practices and
adaptations to spread, the more critical become issues such as bounding and
controlling evolving use, or having a means of establishing trustworthy role
models and leadership to advise and protect users.

3 Designing for Appropriation
We next turned our attention to the issue of designing for appropriation; what
would it mean to do so on this view? This is an open area of research, but we
articulated four areas where design might be expected to impact appropriation:
first and foremost, enabling users to see the consequences of their own and others’
actions. Second, progressive disclosure of function may help, which again speaks
to simplicity. Third, as discussed previously communication channels are critical.
Fourth, deixis (literally, the ability to point to a part of the technology in use) and
reference are necessary.

There are also design consequences for viewing appropriation as a collective
rather than an individual phenomenon. There is a difference between a collective
practice – for example the kinds of norms established by Babble users (see
Kellogg & Erickson, 2005) – and the case of many individuals who may “do” the
same thing or “have” the same customization. The latter is not a collective
appropriation, but at the extreme a kind of “convergent evolution” (many
individuals expressing the same adaptation in response to similar ‘evolutionary
pressures,’ but independently of each other). A primary design goal, then, is to
discover and then support the social processes that can enable and shape
collective action. The emphasis shifts from customization to negotiation; the
notion of simplicity shifts from making easier the user’s choice among a vast
array of customization options to making it easier for a community of users to
propose, try out, and reflect on various ways of using a technology.

115

4 Research Issues
We can summarize the broad research issue at stake here as “how can we do more
with less?” Rather than focusing on an expanding set of “cool” customization
features, we ask how little can we get away with? How can we reduce the
complexity of the technology, get it out of the way, while increasing and
enhancing the ways in which individual users can profit from each other’s
experience, or that collectives of users can negotiate ever more optimal and
suitable adaptations?

Finally, there is still much to sort out in the relationship between social
meaning and individual action and in how appropriation can be managed. Issues
here range from support for leadership and role models among community
members, to how to enhance users’ ability to self-describe and self-regulate, to
basic issues of how to support the emergence of norms in online environments.

5 References
Dourish, P. (2001a). Where the action is. Cambridge, MA: MIT Press.
Dourish, P. (2001b). Seeking a foundation for context-aware computing. Human Computer

Interaction, 16(2-4), pp. 229-241.
Kellogg, W.A. and Erickson, T. (2005). Supporting appropriation work with social translucence,

collective sensemaking, and social scaffolding. Workshop on Supporting Appropriation
Work: Approaches for the ‘Reflective’ User. European Computer-Supported Cooperative
Work, September 18-22, 2005, Paris, France.

Kunau, G., Herrmann, T., and Loser, K-U (2005). Socio-technical self-descriptions as a means
for appropriation. Workshop on Supporting Appropriation Work: Approaches for the
‘Reflective’ User. European Computer-Supported Cooperative Work, September 18-22,
2005, Paris, France.

116

Biographies

Ellen Balka is Professor with the School of Communication, Simon Fraser University
Burnaby, British Columbia.

Arthur B. Baskin works as a researcher with Intelligence IT, Indianapolis, Indiana (USA).

Marek Bell is currently studying towards a Ph.D. at the Department of Computing
Science of the University of Glasgow. His research interests lie in models of user-
interaction and awareness and his supervisors are Dr. Matthew Chalmers and Phil Gray.
He belongs to the Equator IRC which is funded by the EPSRC.

Alan Borning is a professor with the Department of Computer Science & Engineering at
the University of Washington, and also adjunct professor with the Information School.
His current research interests are in human-computer interaction and the interactions
between human values and computer technology, particularly as applied to simulations of
urban development.

Elizabeth Brownholtz works with the IBM Watson Research Center. Her Research
Interests are: Synchronous collaboration, Attention management, Software patterns and
Collaborative Development Environments. Since November 2003, Beth has been working
on the Activity Explorer (AE) project. AE enables users to combine ad hoc, real-time
communications with the rich collaboration features of shared workspaces. It helps
people share their work at the document/object level and combine these shared
documents/objects into hierarchical structured collections, or activity threads that capture
complete tasks and activities.

Diego Calzà works with the department of sociology and social research, University of
Trento, Italy.

117

http://www.sfu.ca/communication
http://www.sfu.ca/

Matthew Chalmers is Reader in Computer Science at the University of Glasgow. His
current research aims to take account of social and perceptual issues both in the design
of computer systems, in visualisation, recommender systems and ubiquitous computing,
and in the theory of computer science, relating contemporary semiology/philosophy to
computational representation. In practice that generally means tracking and logging
systems that show a lot of information, and then feeding that logged data back to people
and into adaptive system infrastructure.

Vincenzo D’Andrea works as an Associate Professor with the University of Trento. A
short Description of his work is only available in Italian:
Professore Associato della Facoltà di Sociologia dell'Università degli Studi di Trento.
Membro del Dipartimento di Informatica e Telecomunicazioni. Collaboratore del
Laboratorio di Ingegneria Informatica.

Janet Davis works as a doctoral candidate with the Department of Computer Science
and Engineering at the University of Washington. Janet's focus is on design to enhance
civic engagement and support the legitimacy of complex systems such as UrbanSim in
democratic decision making. Other interests include the study of value issues (e.g.,
privacy) throughout the undergraduate computer science curriculum.

Paul Dourish is an Associate Professor of Informatics and Computer Science at UC
Irvine, and Associate Director for Research of the Irvine Division of the California Institute
for Telecommunications and Information Technology (Cal-(IT)2). His principal research
interests are in Ubiquitous Computing, Computer-Supported Cooperative Work, Human
Computer Interaction, and Social Studies of Science and Technology.

Thomas Erickson is a Research Staff Member at the IBM T.J. Watson Research Center
in New York where he works on designing systems that support network mediated group
interaction. His research involves exploring the design and use of social proxies,
minimalist graphical visualizations of people and their activities in online environments.
Originally trained in cognitive psychology, Tom gradually morphed into an interaction
designer and researcher via stints in a small startup (5 years) and Apple's Advanced
Technology Group (9 years); he has been at IBM since 1997. His approach to systems
design is shaped by work in sociology, rhetoric, architecture and urban design. He has
contributed to the design of many products, and authored about 50 publications on topics
ranging from personal electronic notebooks and information retrieval systems to pattern
languages and virtual community.

118

http://www.informatics.ics.uci.edu/
http://www.ics.uci.edu/%7Ejpd/www.ics.uci.edu/computerscience
http://www.uci.edu/
http://www.uci.edu/
http://www.calit2.net/
http://www.calit2.net/

Werner Geyer is Research Staff Member, IBM T.J. Watson Research Center,
Cambridge, USA. His main interests are Computer-Supported Cooperative Work, Human
Computer Interaction, Group Communications, Groupware, Collaboration Architectures,
Ubiquitous Computing, Personal Information Management, Team Productivity, Electronic
Meeting Support, Networked Multimedia, Communication Protocols, Distance Education.

Malcolm Hall is currently pursuing a PhD in the area of adaptive mobile recommendation
systems at the University of Glasgow.

Thomas Herrmann is professor with the Ruhr-University Bochum, Institute of Applied
Workscience, Department for Information and Technology Management. His main
research-interests are evaluation and design of socio-technical systems in accordance
with human needs and organizational structures.

Gianni Jacucci works as a Professor with the University of Trento, Department of
Computer and Management Sciences (D.I.S.A.), Laboratory of Information and
Communication Technologies.

M. Cameron Jones works with the University of Illinois as a Graduate Research
Assistant.

Wendy A. Kellogg is Manager of Social Computing at IBM's T. J. Watson Research
Center. Her current work involves designing and studying systems for supporting
computer-mediated communication (CMC) in groups and organizations. Wendy's past
work in human-computer interaction (HCI) has included theory, evaluation methods,
design, and development. She holds a Ph.D. in Cognitive Psychology from the University
of Oregon. She has authored and edited papers in the fields of Cognitive Psychology,
HCI, and CSCW. She served as Technical Papers Co-Chair for CHI 2005, as Technical
Program Co-Chair for ACM's DIS 2000 ("Designing Interactive Systems") conference,
and as General Co-Chair for ACM's CSCW 2000 ("Computer-Supported Cooperative
Work") and ACM’s CHI 1994 ("Human Factors in Computing Systems") conferences.
Wendy is a past member of the National Academies of Science Computer Science and
Telecommunications Board and was elected ACM Fellow in 2002.

119

Gabriele Kunau works as a researcher with the Ruhr-Universität Bochum, Institute of
Applied Workscience. Her research focus lies in the integrated support of software
development and organizational change.

Riad Lemhachheche works with the Oregon State University. His interests are
Information Architecture, specifically Telecommunication Services, Computer Supported
Collaborative Work and Electronic Privacy. A second point of interest is Mobile
Networking, specifically Ubiquitous Computing, Context Awareness, Interaction Design
and Human - Computer Interaction.

Kai-Uwe Loser is data protection officer at the Ruhr-University Bochum.

David W. McDonald works as a researcher with the Information School University of
Washington. His research interests are computer-supported cooperative work (CSCW),
human-computer interaction (HCI), system design, software architecture, software
engineering, ethnographic study, and the social analysis of technology.

David R. Millen is a group manager in the Collaborative User Experience group at IBM T
J Watson Research in Cambridge, MA. His group studies the social and technological
implications of on-line communities and large-scale collaboration. Through field study and
prototype applications, his group explores how to create and support distributed teams
and on-line communities. Many of these applications include interactive visualizations to
enhance the user experience and help make large amounts of information accessible to
the community. Prior to joining IBM, David worked at AT&T Labs, where he explored how
new technologies changed employee work activities, organizational roles, and patterns of
communication. His research keywords are: Online communities, Computer-mediated
communication, Computer-Supported Cooperative Work (CSCW).

Suzanne O. Minassian. As the Domain Engineer for IBM Workplace for Business
Strategy Execution (IWBSE), Suzanne works to define the overall product function and
development strategy. She also collaborates with customers to evaluate how IWBSE
should be designed for their business needs from a functional and interface perspective.
Having come from IBM Research, she is particularly interested in collaboration
technologies, personal and business productivity tools, and planning, conducting, and
performing user studies and research. Suzanne graduated from Bentley College with an
MBA, concentrating on Human Factors in Information Design.

120

Michael J. Muller is Research Scientist/Design Researcher at IBM Watson Research
Center. His Research Interests are: Participatory design, Communities of practice,
Methods for analysis, design, and assessment, Ethnocritical analyses of the roles of
people in human-computer interaction, Human-computer interaction work as cultural and
linguistic translation.

Samuli Pekkola PhD, is currently Professor and Vice head of the department in the
Department of Computer Science and Information Systems at the University of Jyväskylä,
Finland. His research evolves around the support for office and group work through
different devices and around participatory information systems development methods.

Volkmar Pipek studied Computer Science and Economics at the University of
Kaiserslautern, focussing on Database Systems and Artificial Intelligence. His research
interest into interdisciplinary, more application-oriented computer science leads him to
the Research Group on HCI and CSCW (ProSEC) at the Institute for Computer Science
III at the University of Bonn. He worked from July 1997 to December 1998 in the project
POLITeam on "awareness" issues and organizational aspects of introduction and
maintenance of groupware applications. 1999 he worked in several smaller projects on
Knowledge Management and Distance Learning. From April 2000 to March 2003 he was
coordinating the project OlViO, a project on the use of IT in Organisational Learning.
Currently he is a guest researcher at the Laboratory of HCI and Group Technology at the
University of Oulu, Finland. He belongs to the board of trustees of the International
Institute for Socio-Informatics (IISI).
http://members.iisi.de/pipek/

Markus Rohde, Dipl.-Psych., studied psychology and sociology at the University of Bonn
and is one of the founders of the International Institute for Socio-Informatics (IISI). At the
time being he is working as project manager for IISI and as research associate at the
Institute for Information Systems at the University of Siegen. Moreover he is editor of the
political science journal "Forschungsjournal Neue Soziale Bewegungen" (New Social
Movements). Since 1991 his research focuses on usability engineering of network
systems, on virtual organizations, and on "organization and technology development".
Since 1994 he is working as a consultant for medium-sized enterprises and for nonprofit-
organizations. From 1997 until 2001 he worked as CEO of AGENDA CONSULT GmbH.
In 2004 he was research associate for Fraunhofer Institute for Applied Information
Technology (Fhg-FIT) in Sankt Augustin. His main research interests are human-
computer interaction, computer supported cooperative work (CSCW), expertise
management and blended learning, virtual organizations, non-governmental
organizations and (new) social movements.
http://members.iisi.de/rohde/

121

http://members.iisi.de/pipek/
http://members.iisi.de/rohde/

Till Schümmer works as a researcher with the FernUniversität Hagen. His research
interest are CSCW, CSCL, distributed systems, software engineering and agile methods,
design patterns and cooperative games.

Bettina Törpel is an Assistant Prof. with Technical University of Denmark in Lyngby,
Copenhagen.

Michael B. Twidale works with the Graduate School of Library and Information Science,
University of Illinois His activities are Computers: specifically computer-supported
cooperative work, online information systems, digital libraries, user interface design,
museum informatics, designing interfaces to support informal workplace incremental
learning of computer systems.

Ina Wagner is Professor for Multidisciplinary Systems Design and Computer-Supported
Co-operative Work (CSCW) and Head of the Institute for Technology Assessment and
Design. She has edited and written numerous books and authored over 100 papers on a
variety of technology-related issues, amongst them a feminist perspective in science and
technology, ethical and political issues in systems design, computer-support of hospital
work and of architectural design and planning, CSCW and networking. One of her main
research interests is creative design work.

Eric Wilcox is a designer researcher working in the Collaborative User Experience
Group at IBM. He has led innovative research and forged relationships between research
and product divisions through his use of design. Eric has lectured and taught classes in
time based media, and currently chairs the Boston AIGA Experience Design Community.

122

