
61

Towards a Toolkit for the Rapid
Creation and Programming of Smart
Environments
Thomas Kubitza

University of Stuttgart
thomas.kubitza@vis.uni-stuttgart.de

Abstract. “Smart” environments rely on the interconnection of various devices that are
equipped with sensors and actuators and are statically or dynamically deployed in rooms
or buildings or worn by users. Although it has become much easier to build and program
single device installations with platforms such as Arduino, it still remains a challenging
task to build whole environments with heterogeneous interconnected devices. A lot of
thiseffort is due to the implementation of similar functionality in different programming
languages for different device platforms and the bridging of the different communication
technologies, protocols and formats between devices. The author believes that the right
toolkit can widely cover this technical complexity so that designers and users of a smart
environment can focus on the interaction design and the programming of intelligent and
useful behavior. Such a toolkit is currently being developed within the meSch EU project
and is presented and demonstrated by the author.

1 Introduction

Smart and interactive spaces are based on a common principle; different kinds of
devices with sensors and actuators attached are statically installed in rooms,
levels, whole buildings or are even worn by users. All these heterogeneous
devices need to talk to each other or to an entity that constantly combines system
state and generates system reactions. Multiple reasons make the setup of such
environments a complex task. Firstly, similar functionality has to be implemented

Thomas Kubitza (2015):
Towards a Toolkit for the Rapid Creation and Programming of Smart Environments.
In International Reports on Socio-Informatics (IRSI),
Proceedings of the CHI 2015 - Workshop on End User Development in the Internet of Things Era
(Vol. 12, Iss. 2, pp. 61-66)

62

on various platforms ranging from microcontrollers to High-End computers. This
requires expert knowledge in very specific programming languages and platforms
as well as the management of various development environments (IDEs) and
compilation tool chains. Secondly, different communications technologies,
protocols and formats have to be bridged so that devices can actually exchange
data. Thirdly, devices have to be deployed in their target environment, supplied
with electricity and wired or wireless communication infrastructure (e.g. WiFi
access points). Especially the first two reasons put up high boundary for non-
experts in electronics and programming. This limits its usage to small and mostly
only professional user groups. We believe that the right tools can open up the
creation of smart environments to a much larger audience in the same way as
physical prototyping platforms such as Arduino made the access to
microcontrollers much easier and in the same way as Apps made potentially
everyone the programmer of his own cell phone (and the phones of millions of
others). By empowering groups such as user experience designers, scientist,
designers, artists, makers and hobbyists we envision the creation of a large set of
truly useful applications evaluated in realistic environments and addressing a
broad range of problems. In this workshop-paper a toolkit is presented that
drastically reduces the technical complexity for creating and programming smart
environments. Our approach consists of two main pillars: (1) A client software for
each type of end device is provided which allows to remotely access and control

all its abilities and to abstract from
its specific platform. (2) A server
software on a central computer node
is provided to bridge between
various communication-
technologies and to provide unified
access to all sensors and actuators
of configured devices through a web
based JavaScript development
environment. This approach allows
to quickly implement or change the
behaviour of a system without the
need to reprogram or physically
access any of the associated or
deployed devices. JavaScript, one of
the most widespread and growing
programming languages, is used to
define the system behaviour in a
singlespot.

63

Figure 1: Interactive museum setup – a

WiFi projector lamp and a distance sensor

plinth with an exhibit on top

Figure 2: Various interactive content can be projected around the exhibit placed on the plinth

based on visitors detected in proximity

2 System Concept

Conceptually our toolkit strictly follows a master-slave architecture; the client
side software allows to treat each client device as a source of sensor events, a sink
for actuation commands, or both. It allows abstracting from the underlying
operation system and hardware as well as the communication technology and
protocol. For each end device platform a specific client firmware has to be
implemented. However, this implementation effort is done just once by experts
for this specific platform; after that, users of our toolkit just need to install the

firmware once and from that point on they can access and control all its abilities
from the central server node.

Figure 3: a) Graphical device configuration, b) Rules overview and control, c) Code auto-

completion in rules editor

The central server node provides a web based user interface for the configuration
of devices and the creation of behaviour rules. It includes a rule engine that
triggers events and runs rules as soon as sensor data is received. Rules may then

64

again trigger actuator commands which are instantly sent to the appropriate
devices.

3 User Interface

The toolkit user interface runs in any browser and is structured in three sections:
Devices, Events and Rules. New devices automatically appear in the device
overview after the installation of their specific client software. In its initial state a
device has no modules configured; this means no sensor or actuators are activated
yet. In the device configuration view, modules can be selected from a list of
supported sensors and actuator modules (figure 3a). By double-clicking on a
module, it is automatically assigned to a compatible and free port; this way users
don’t need to care about the right attachment of sensors beforehand, the device
configuration steps already gives visual hints about the right ports to connect to.
After saving a configuration, it is instantly pushed to the device where the
selected modules are activated. Client software for a wide range of physical
prototyping and mobile platforms is already available.

In the the rules-view an overview of available rules is given. These are structured
in groups and consist of a name, a description and an execution priority. Groups
allow to tie together rules which are logically associated or only apply to a certain
space in the environment (e.g. “Office Floor 1”). Groups and rules can be enabled
and disabled individually which allows easy instant switching of behaviour for
single spaces or whole environments (figure 3b). Single rules can be edited any
time and the changes are applied immediately. Syntax highlighting and auto-
completion features help novice users to shimmy along available devices,
modules and their individual properties without any previous knowledge (figure
3c); advanced users benefit from the coding speedup and correct referencing of
objects. Multiple application setups in the cultural heritage domain (see figures 1
and 2) as well as in office automatisatin have been already realized using our
toolkit – more details on these will be given during the workshop.

4 Demonstration during Workshop

The author will bring all necessary components to the workshop so that multiple
groups can independently get hands-on experience with the toolkit. The
components will include two smartphones, two tablets, two WiFi projectors, two
.NET Gadgeteer kits, two Arduino kits, multiple RPis and Intel Edisons, various
sensors and actuators as well as multiple Bluetooth Low Energy beacons for
proximity experiments. Participants will be able to program all these devices
through a web based IDE which they can run in the browser of their own PC or

65

tablet. Further, devices can be integrated that are brought by participants (e.g.
Android smartphones, fitness trackers, etc.). Quick and simple mashups can be
demonstrated as well as more advanced setups that integrate a larger set of
heterogeneous devices and more complex logic.

5 Conclusion and Future Work

The toolkit introduced in this workshop-paper aims to drastically reduce the
technical effort for setting up a smart environment and to provide a single
interface in which its behavior can be programmed using a popular web
programming language. We envision this toolkit to be aplatform for more
advanced research on the programming of smart environments and interactive
spaces: We are planning to extend the toolkit with various additional layers that
lie on top of the Javascript interpreter and target users with different expertise,
e.g. configurable behavior scripts, visual programming, programming by natural
language. Further, we are exploring new ways of programming environments
apart from writing code on a single desktop PC, e.g. automatic code creation by
demonstration as well as proximity based code generation and assistance. We
further want to use the power of the community and are therefore developing
means that allow easy sharing and integrating single behavior rules or full setups
with a single click. The author believes that the presentation and hands-on
experience with the toolkit can lead to an active discussion and extremely
valuable feedback from the EUD community. This will be an important input into
the further development of the toolkit and related projects.

66

