
15

Utilizing Programmer Communities for
End User Programmer Feedback
Michelle Ichinco, Kyle Harms, Caitlin Kelleher
Washington University in St. Louis
{ichincom / harmsk / ckelleher}@seas.wustl.edu

Abstract. In this paper, we describe a system for large scale feedback and the potential
role it could play in programmer communities. Imagine a system that crowdsources
feedback from experienced programmers and automatically distributes it to less
experienced end user programmers. We believe a system like this may be helpful for
communities like maker spaces and open source software, which have diverse groups of
contributors who collaborate and support each other. With an expected increase in end
user programming communities for customization in the Internet of Things, such
feedback systems would likely benefit end user programmers and the code they produce.

1 Introduction

The Internet of Things is likely to increase the already large population of end
user programmers. The growing number of “smart” devices and possible features
suggests that niche programmer communities could potentially form around
specific interests and projects. We expect that these communities, like current
open source and maker communities, will include programmers of varying skill
levels, motivated by the desire to improve products that they use [8]. However,
end user programmers often find various aspects of programming confusing, such
as program behavior and how to create complex functionalities [7]. Current
systems focus on either 1) helping end user programmers solve known problems,
or 2) automatically locating issues, without providing help toward solving those
problems. We propose a crowdsourced feedback system to provide both of these
types of support for end user programmers.

Michelle Ichinco, Kyle Harms, Caitlin Kelleher (2015):
Utilizing Programmer Communities for End User Programmer Feedback.
In International Reports on Socio-Informatics (IRSI),
Proceedings of the CHI 2015 - Workshop on End User Development in the Internet of Things Era
(Vol. 12, Iss. 2, pp. 15-20)

16

Consider a novice end user programmer, Jamie, who is working on an application
to control home access for visitors like nannies and maids. Jamie can ask
questions of more experienced programmers through forums, but when Jamie
implements a security feature based on information she found on a website, she
may not realize that a more secure implementation exists. Experienced
programmers may spend time answering questions, but they will not necessarily
review every line of code. Now imagine a system that Jamie can have “crawl” her
code to find opportunities for improvement, as suggested by more experienced
developers in her community. These suggestions could provide example code
designed to help Jamie learn and improve her applications. We have begun to
explore a crowdsourced system for suggesting this type of code improvement to
novice programmers.

2 Related work

Two existing types of systems help end user programmers improve their code: 1)
systems that support programmers who can identify their issues, and 2) systems
that can identify issues or opportunities for improvement in code.

Overcoming programming problems
Online forums and crowdsourced bug fixes help programmers to solve problems
that they have found in their own code. StackOverflow and similar forums can
help programmers to overcome problems as long as the end user programmers
know which questions to ask [9]. Tools also exist to provide support for fixing
bugs, such as HelpMeOut, which collects bug fixes from a population, has experts
annotate the fixes, and then presents them to users who have the same issues [3].
Currently, this type of assistance can only help when the programmer already
knows they have a problem or when an error alerts them to an issue.

Identifying programming problems
Static code analysis and code smells can help programmers to identify issues in
code. A variety of static code analysis tools, such as FindBugs [4], check
programs for common issues and even allow programmers to author their own
checks. Code smell detection systems similarly automatically find potentially
problematic code [2]. Yet, these types of systems do not provide information
about how to fix the problems or how to improve programming skills.

17

3 A Crowdsourced Feedback System

With existing systems in mind, we wanted to design a system that would find
issues that end users do not realize they have, as well as provide them with
information about how to fix those problems. Since programmers often search the
web for examples of code to solve their problems [1], we operationalize
“feedback” as example code that can be used to solve a problem or improve code.
We believe that making the system crowdsourced could reduce the amount of
time each experienced programmer would need to spend to provide feedback at a
large scale. The model for this system has three main components, as shown in
Fig. 1:
1) create a code example and author a rule script for that example, 2) community
review of feedback, and 3) feedback presentation to the end user programmer.

1) Code Example Creation and Rule Script Authoring

First, an experienced programmer creates a code example by improving an
existing program and then annotates the example to provide assistance for using
it. The annotated code example may focus on proper programming practices, such
as a more efficient way to code a function. A code example could also show an
example of a similar, but more advanced code snippet that might improve a basic
program, such as improved security for a login feature. Additionally, end user
programmers could likely create code examples as they begin to gain skills.

An experienced programmer then authors a rule script that codifies the conditions
under which this code example might help other users improve their program.
These rules enable experienced programmers to define which programs qualify
for specific feedback, such that the system could then automatically distribute
feedback.

2) Community Review of Feedback

Other experienced programmers would then review feedback to ensure quality
and generalizability. This process would involve a number of experienced
programmers contributing a very small amount of time to check over existing
feedback.

3) Code Example Presentation

The system would then use the rule scripts (created in step 1) to determine which
programs qualify for certain code examples. A code example would then be
shown to the end user programmer as a suggested way for them to improve their
code. A user could, hypothetically, receive these suggested code examples
automatically, or select to see them on request.

18

 Fig. 2: We found that these three

types of example annotations did not

 significantly affect novice

 programmer’s ability to complete

 a task using an example.

Fig. 1: Hypothesized workflow for a crowdsourced

feedback system for end user programmers

19

4 Studies

We ran three studies on crowdsourcing feedback: a study of the feasibility of
experienced programmers creating examples and authoring rules, a study on the
workflow of a tool for this type of system, and a study looking at the presentation
of examples.

Our exploratory study of example creation and rule authoring showed that
experienced programmers often created useful code example suggestions and
authored rules in pseudocode [6]. Their psuedocode rule scripts also demonstrated
how experienced programmers conceptualized authoring rule scripts, providing
insight into how to design a tool to support rule-authoring.

Communities of programmers will likely include programmers of varying skill
levels, all of whom we believe can be valuable contributors to a crowdsourced
feedback system. We developed a tool prototype, which involves four sub-tasks:
I) explore an end user’sprogram, II) evaluate existing feedback for that program,
III) create feedback for that program, and IV) author a rule script for that feedback
[5]. Preliminary results showed that a broad population of programmers (97% of
participants) can evaluate and create feedback, while 71% can effectively author
new rules. One concern, however, is that participants spent about 5.5, 11.5, 9 and
14 minutes on each of the four sub-tasks, respectively. While these times may be
reasonable with respect to answering questions thoroughly on a forum, ideally,
each sub-task would be completed in a shorter amount of time.

We may be able to reduce feedback creation time by changing how experienced
programmers annotate example code. We ran a preliminary study to investigate
how different annotation styles affect novice programmers’ abilities to complete
tasks. Results showed that simple highlighting, as shown in Fig. 2-C, can focus a
programmer’s attention on the critical aspect of a code example just as effectively
as two types of textual descriptions (Fig. 2-A and Fig. 2-B). This supports the use
of crowdsourcing for providing feedback, since simple annotations likely require
less time and revision than textual annotations.

5 Conclusion and Future Directions

As communities of workers form with the Internet of Things, we believe it will be
important to harness the knowledge of experienced programmers to improve the
programming skills of the end user programmer population. End user
programmers may not always know which questions to ask or how to improve

20

their code, so we believe that leveraging the crowd of experienced programmers
may improve the code and skills of end user programmers.

6 Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 1054587.

7 References

[1] Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and Klemmer, S.R. Two studies of

 opportunistic programming: interleaving web foraging, learning, and writing code. Proc. of

the SIGCHI Conf. on Human Factors in Computing Systems, ACM (2009), 1589–1598.

[2] Fowler, M. and Beck, K. Refactoring: Improving the Design of Existing Code. Addison-

 Wesley Professional, 1999.

[3] Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S.R. What would other

programmers do: suggesting solutions to error messages. Proc. 28th int. conf. on Human

factors in computing systems, (2010), 1019–1028.

[4] Hovemeyer, D. and Pugh, W. Finding bugs is easy. SIGPLAN Not. 39, 12 (2004), 92–106.

[5] Ichinco, M., Dosouto, Y., and Kelleher, C. A tool for authoring programs that automatically

 distribute feedback to novice programmers. Visual Lang. and Human-Centric Computing

 (VL/HCC), 2014 IEEE Symp. on, IEEE (2014), 207–208.

[6] Ichinco, M., Zemach, A., and Kelleher, C. Towards generalizing expert programmers’

 suggestions for novice programmers. Visual Lang. and Human-Centric Computing

(VL/HCC), 2013 IEEE Symp. on, IEEE (2013), 143–150.

[7] Ko, A.J., Myers, B.A., and Aung, H.H. Six learning barriers in end-user programming

systems. Visual Lang. and Human Centric Computing, 2004 IEEE Symp. on, IEEE (2004),

199–206.

[8] Shah, S.K. Motivation, governance, and the viability of hybrid forms in open source software

 development. Management Science 52, 7 (2006), 1000–1014.

[9] Stack Overflow. http://stackoverflow.com/.

